Click here to close now.


Cloud Security Authors: Pat Romanski, Liz McMillan, Cloud Best Practices Network, Teresa Schoch, Marc Crespi

Related Topics: Eclipse, Java IoT, Microservices Expo, IBM Cloud, Weblogic, Microsoft Cloud, Recurring Revenue, Log Management, @CloudExpo

Eclipse: Article

Cloud Computing, SOA and Windows Azure

Cloud Services with Windows Azure - Part 1

For a complete list of the co-authors and contributors, see the end of the article.

Microsoft's Software-plus-Services strategy represents a view of the world where the growing feature-set of devices and the increasing ubiquity of the Web are combined to deliver more compelling solutions. Software-plus-Services represents an evolutionary step that is based on existing best practices in IT and extends the application potential of core service-orientation design principles.

Microsoft's efforts to embrace the Software-plus-Services vision are framed by three core goals:

  • User experiences should span beyond a single device
  • Solution architectures should be able to intelligently leverage and integrate
    on-premise IT assets with cloud assets
  • Tightly coupled systems should give way to federations of cooperating systems and loosely coupled compositions

The Windows Azure platform represents one of the major components of the Software-plus-Services strategy, as Microsoft's cloud computing operating environment, designed from the outset to holistically manage pools of computation, storage and networking; all encapsulated by one or more services.

Cloud Computing 101
Just like service-oriented computing, cloud computing is a term that represents many diverse perspectives and technologies. In this book, our focus is on cloud computing in relation to SOA and Windows Azure.

Cloud computing enables the delivery of scalable and available capabilities by leveraging dynamic and on-demand infrastructure. By leveraging these modern service technology advances and various pervasive Internet technologies, the "cloud" represents an abstraction of services and resources, such that the underlying complexities of the technical implementations are encapsulated and transparent from users and consumer programs interacting with the cloud.

At the most fundamental level, cloud computing impacts two aspects of how people interact with technologies today:

  • How services are consumed
  • How services are delivered

Although cloud computing was originally, and still often is, associated with Web-based applications that can be accessed by end-users via various devices, it is also very much about applications and services themselves being consumers of cloud-based services. This fundamental change is a result of the transformation brought about by the adoption of SOA and Web-based industry standards, allowing for service-oriented and Web-based resources to become universally accessible on the Internet as on-demand services.

One example has been an approach whereby programmatic access to popular functions on Web properties is provided by simplifying efforts at integrating public-facing services and resource-based interactions, often via RESTful interfaces. This was also termed "Web-oriented architecture" or "WOA," and was considered a subset of SOA. Architectural views such as this assisted in establishing the Web-as-a-platform concept, and helped shed light on the increasing inter-connected potential of the Web as a massive collection (or cloud) of ready-to-use and always-available capabilities.

This view can fundamentally change the way services are designed and constructed, as we reuse not only someone else's code and data, but also their infrastructure resources, and leverage them as part of our own service implementations. We do not need to understand the inner workings and technical details of these services; Service Abstraction (696), as a principle, is applied to its fullest extent by hiding implementation details behind clouds.

SOA Principles and Patterns
There are several SOA design patterns that are closely related to common cloud computing implementations, such as Decoupled Contract [735], Redundant Implementation [766], State Repository [785], and Stateful Services [786]. In this and subsequent chapters, these and other patterns will be explored as they apply specifically to the Windows Azure cloud ­platform.

With regards to service delivery, we are focused on the actual design, development, and implementation of cloud-based services. Let's begin by establishing high-level characteristics that a cloud computing environment can include:

  • Generally accessible
  • Always available and highly reliable
  • Elastic and scalable
  • Abstract and modular resources
  • Service-oriented
  • Self-service management and simplified provisioning

Fundamental topics regarding service delivery pertain to the cloud deployment model used to provide the hosting environment and the service delivery model that represents the functional nature of a given cloud-based service. The next two sections explore these two types of models.

Cloud Deployment Models
There are three primary cloud deployment models. Each can exhibit the previously listed characteristics; their differences lie primarily in the scope and access of published cloud services, as they are made available to service consumers.

Let's briefly discuss these deployment models individually.

Public Cloud
Also known as external cloud or multi-tenant cloud, this model essentially represents a cloud environment that is openly accessible. It generally provides an IT infrastructure in a third-party physical data center that can be utilized to deliver services without having to be concerned with the underlying technical complexities.

Essential characteristics of a public cloud typically include:

  • Homogeneous infrastructure
  • Common policies
  • Shared resources and multi-tenant
  • Leased or rented infrastructure; operational expenditure cost model
  • Economies of scale and elastic scalability

Note that public clouds can host individual services or collections of services, allow for the deployment of service compositions, and even entire service inventories.

Private Cloud
Also referred to as internal cloud or on-premise cloud, a private cloud intentionally limits access to its resources to service consumers that belong to the same organization that owns the cloud. In other words, the infrastructure that is managed and operated for one organization only, primarily to maintain a consistent level of control over security, privacy, and governance.

Essential characteristics of a private cloud typically include:

  • Heterogeneous infrastructure
  • Customized and tailored policies
  • Dedicated resources
  • In-house infrastructure (capital expenditure cost model)
  • End-to-end control

Community Cloud
This deployment model typically refers to special-purpose cloud computing environments shared and managed by a number of related organizations participating in a common domain or vertical market.

Other Deployment Models
There are variations of the previously discussed deployment models that are also worth noting. The hybrid cloud, for example, refers to a model comprised of both private and public cloud environments. The dedicated cloud (also known as the hosted cloud or virtual private cloud) represents cloud computing environments hosted and managed off-premise or in public cloud environments, but dedicated resources are provisioned solely for an organization's private use.

The Intercloud (Cloud of Clouds)
The intercloud is not as much a deployment model as it is a concept based on the aggregation of deployed clouds (Figure 8.1). Just like the Internet, which is a network of networks; intercloud refers to an inter-connected global cloud of clouds. Also like the World Wide Web, intercloud represents a massive collection of services that organizations can explore and consume.

Figure 1: Examples of how vendors establish a commercial intercloud

From a services consumption perspective, we can look at the intercloud as an on-demand SOA environment where useful services managed by other organizations can be leveraged and composed. In other words, services that are outside of an organization's own boundaries and operated and managed by others can become a part of the aggregate portfolio of services of those same organizations.

Deployment Models and Windows Azure
Windows Azure exists in a public cloud. Windows Azure itself is not made available as a packaged software product for organizations to deploy into their own IT enterprises. However, Windows Azure-related features and extensions exist in Microsoft's on-premise software products, and are collectively part of Microsoft's private cloud strategy. It is important to understand that even though the software infrastructure that runs Microsoft's public cloud and private clouds are different, layers that matter to end-user organizations, such as management, security, integration, data, and application are increasingly consistent across private and public cloud environments.

Service Delivery Models
Many different types of services can be delivered in the various cloud deployment environments. Essentially, any IT resource or function can eventually be made available as a service. Although cloud-based ecosystems allow for a wide range of service delivery models, three have become most prominent:

Infrastructure-as-a-Service (IaaS)
This service delivery model represents a modern form of utility computing and outsourced managed hosting. IaaS environments manage and provision fundamental computing resources (networking, storage, virtualized servers, etc.). This allows consumers to deploy and manage assets on leased or rented server instances, while the service providers own and govern the underlying infrastructure.

Platform-as-a-Service (PaaS)
The PaaS model refers to an environment that provisions application platform resources to enable direct deployment of application-level assets (code, data, configurations, policies, etc.). This type of service generally operates at a higher abstraction level so that users manage and control the assets they deploy into these environments. With this arrangement, service providers maintain and govern the application environments, server instances, as well as the underlying infrastructure.

Software-as-a-Service (SaaS)
Hosted software applications or multi-tenant application services that end-users consume directly correspond to the SaaS delivery model. Consumers typically only have control over how they use the cloud-based service, while service providers maintain and govern the software, data, and underlying infrastructure.

Other Delivery Models
Cloud computing is not limited to the aforementioned delivery models. Security, governance, business process management, integration, complex event processing, information and data repository processing, collaborative processes-all can be exposed as services and consumed and utilized to create other services.

Note: Cloud deployment models and service delivery models are covered in more detail in the upcoming book SOA & Cloud Computing as part of the Prentice Hall Service-Oriented Computing Series from Thomas Erl. This book will also introduce several new design patterns related to cloud-based service, composition, and platform design.

IaaS vs. PaaS
In the context of SOA and developing cloud-based services with Windows Azure, we will focus primarily on IaaS and PaaS delivery models in this chapter. Figure 8.2 illustrates a helpful comparison that contrasts some primary differences. Basically, IaaS represents a separate environment to host the same assets that were traditionally hosted on-premise, whereas PaaS represents environments that can be leveraged to build and host next-generation service-oriented solutions.

Figure 2: Common Differentiations Between Delivery Models

We interact with PaaS at a higher abstraction level than with IaaS. This means we manage less of the infrastructure and assume simplified administration responsibilities. But at the same time, we have less control over this type of environment.

IaaS provides a similar infrastructure to traditional on-premise environments, but we may need to assume the responsibility to re-architect an application in order to effectively leverage platform service clouds. In the end, PaaS will generally achieve a higher level of scalability and reliability for hosted services.

An on-premise infrastructure is like having your own car. You have complete control over when and where you want to drive it, but you are also responsible for its operation and maintenance. IaaS is like using a car rental service. You still have control over when and where you want to go, but you don't need to be concerned with the vehicle's maintenance. PaaS is more comparable to public transportation. It is easier to use as you don't need to know how to operate it and it costs less. However, you don't have control over its operation, schedule, or routes.


  • Cloud computing enables the delivery of scalable and available capabilities by leveraging dynamic and on-demand infrastructure.
  • There are three common types of cloud deployment models: public cloud, private cloud, and community cloud.
  • There are three common types of service delivery models: IaaS, PaaS, and SaaS.

•   •   •

This excerpt is from the book, "SOA with .NET & Windows Azure: Realizing Service-Orientation with the Microsoft Platform", edited and co-authored by Thomas Erl, with David Chou, John deVadoss, Nitin Ghandi, Hanu Kommapalati, Brian Loesgen, Christoph Schittko, Herbjörn Wilhelmsen, and Mickie Williams, with additional contributions from Scott Golightly, Daryl Hogan, Jeff King, and Scott Seely, published by Prentice Hall Professional, June 2010, ISBN 0131582313, Copyright 2010 SOA Systems Inc. For a complete Table of Contents please visit:

David Chou is a technical architect at Microsoft and is based in Los Angeles. His focus is on collaborating with enterprises and organizations in such areas as cloud computing, SOA, Web, distributed systems, and security.

John deVadoss leads the Patterns & Practices team at Microsoft and is based in Redmond, WA.

Thomas Erl is the world's top-selling SOA author, series editor of the Prentice Hall Service-Oriented Computing Series from Thomas Erl (, and editor of the SOA Magazine (

Nitin Gandhi is an enterprise architect and an independent software consultant, based in Vancouver, BC.

Hanu Kommalapati is a Principal Platform Strategy Advisor for a Microsoft Developer and Platform Evangelism team based in North America.

Brian Loesgen is a Principal SOA Architect with Microsoft, based in San Diego. His extensive experience includes building sophisticated enterprise, ESB and SOA solutions.

Christoph Schittko is an architect for Microsoft, based in Texas. His focus is to work with customers to build innovative solutions that combine software + services for cutting edge user experiences and the leveraging of service-oriented architecture (SOA) solutions.

Herbjörn Wilhelmsen is a consultant at Forefront Consulting Group, based in Stockholm, Sweden. His main areas of focus are Service-Oriented Architecture, Cloud Computing and Business Architecture.

Mickey Williams leads the Technology Platform Group at Neudesic, based in Laguna Hills,

Scott Golightly is currently an Enterprise Solution Strategist with Advaiya, Inc; he is also a Microsoft Regional Director with more than 15 years of experience helping clients to create solutions to business problems with various technologies.

Darryl Hogan is an architect with more than 15 years experience in the IT industry. Darryl has gained significant practical experience during his career as a consultant, technical evangelist and architect.

As a Senior Technical Product Manager at Microsoft, Kris works with customers, partners, and industry analysts to ensure the next generation of Microsoft technology meets customers' requirements for building distributed, service-oriented solutions.

Jeff King has been working with the Windows Azure platform since its first announcement at PDC 2008 and works with Windows Azure early adopter customers in the Windows Azure TAP

Scott Seely is co-founder of Tech in the Middle,, and president of Friseton, LLC,

More Stories By Thomas Erl

Thomas Erl is a best-selling IT author and founder of Arcitura Education Inc., a global provider of vendor-neutral educational services and certification that encompasses the Cloud Certified Professional (CCP) and SOA Certified Professional (SOACP) programs from™ and® respectively. Thomas has been the world's top-selling service technology author for nearly a decade and is the series editor of the Prentice Hall Service Technology Series from Thomas Erl, as well as the editor of the Service Technology Magazine. With over 175,000 copies in print world-wide, his eight published books have become international bestsellers and have been formally endorsed by senior members of many major IT organizations and academic institutions. To learn more, visit:

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Clearly the way forward is to move to cloud be it bare metal, VMs or containers. One aspect of the current public clouds that is slowing this cloud migration is cloud lock-in. Every cloud vendor is trying to make it very difficult to move out once a customer has chosen their cloud. In his session at 17th Cloud Expo, Naveen Nimmu, CEO of Clouber, Inc., will advocate that making the inter-cloud migration as simple as changing airlines would help the entire industry to quickly adopt the cloud without worrying about any lock-in fears. In fact by having standard APIs for IaaS would help PaaS expl...
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
Organizations already struggle with the simple collection of data resulting from the proliferation of IoT, lacking the right infrastructure to manage it. They can't only rely on the cloud to collect and utilize this data because many applications still require dedicated infrastructure for security, redundancy, performance, etc. In his session at 17th Cloud Expo, Emil Sayegh, CEO of Codero Hosting, will discuss how in order to resolve the inherent issues, companies need to combine dedicated and cloud solutions through hybrid hosting – a sustainable solution for the data required to manage I...
NHK, Japan Broadcasting, will feature the upcoming @ThingsExpo Silicon Valley in a special 'Internet of Things' and smart technology documentary that will be filmed on the expo floor between November 3 to 5, 2015, in Santa Clara. NHK is the sole public TV network in Japan equivalent to the BBC in the UK and the largest in Asia with many award-winning science and technology programs. Japanese TV is producing a documentary about IoT and Smart technology and will be covering @ThingsExpo Silicon Valley. The program, to be aired during the peak viewership season of the year, will have a major impac...
Apps and devices shouldn't stop working when there's limited or no network connectivity. Learn how to bring data stored in a cloud database to the edge of the network (and back again) whenever an Internet connection is available. In his session at 17th Cloud Expo, Bradley Holt, Developer Advocate at IBM Cloud Data Services, will demonstrate techniques for replicating cloud databases with devices in order to build offline-first mobile or Internet of Things (IoT) apps that can provide a better, faster user experience, both offline and online. The focus of this talk will be on IBM Cloudant, Apa...
WebRTC is about the data channel as much as about video and audio conferencing. However, basically all commercial WebRTC applications have been built with a focus on audio and video. The handling of “data” has been limited to text chat and file download – all other data sharing seems to end with screensharing. What is holding back a more intensive use of peer-to-peer data? In her session at @ThingsExpo, Dr Silvia Pfeiffer, WebRTC Applications Team Lead at National ICT Australia, will look at different existing uses of peer-to-peer data sharing and how it can become useful in a live session to...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
The broad selection of hardware, the rapid evolution of operating systems and the time-to-market for mobile apps has been so rapid that new challenges for developers and engineers arise every day. Security, testing, hosting, and other metrics have to be considered through the process. In his session at Big Data Expo, Walter Maguire, Chief Field Technologist, HP Big Data Group, at Hewlett-Packard, will discuss the challenges faced by developers and a composite Big Data applications builder, focusing on how to help solve the problems that developers are continuously battling.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...