Welcome!

Security Authors: Liz McMillan, Vincent Brasseur, Pat Romanski, Elizabeth White, Gilad Parann-Nissany

Related Topics: Cloud Expo, SOA & WOA, .NET

Cloud Expo: Book Excerpt

Cloud Computing, SOA and Windows Azure - Part 3

Windows Azure Roles

For a complete list of the co-authors and contributors, see the end of the article.

A cloud service in Windows Azure will typically have multiple concurrent instances. Each instance may be running all or a part of the service's codebase. As a developer, you control the number and type of roles that you want running your service.

Web Roles and Worker Roles
Windows Azure roles are comparable to standard Visual Studio projects, where each instance represents a separate project. These roles represent different types of applications that are natively supported by Windows Azure. There are two types of roles that you can use to host services with Windows Azure:

  • Web roles
  • Worker roles

Web roles provide support for HTTP and HTTPS through public endpoints and are hosted in IIS. They are most comparable to regular ASP.NET projects, except for differences in their configuration files and the assemblies they reference.

Worker roles can also expose external, publicly facing TCP/IP endpoints on ports other than 80 (HTTP) and 443 (HTTPS); however, worker roles do not run in IIS. Worker roles are applications comparable to Windows services and are suitable for background ­processing.

Virtual Machines
Underneath the Windows Azure platform, in an area that you and your service logic have no control over, each role is given its own virtual machine or VM. Each VM is created when you deploy your service or service-oriented solution to the cloud. All of these VMs are managed by a modified hypervisor and hosted in one of Microsoft's global data centers.

Each VM can vary in size, which pertains to the number of CPU cores and memory. This is something that you control. So far, four pre-defined VM sizes are provided:

  • Small - 1.7ghz single core, 2GB memory
  • Medium - 2x 1.7ghz cores, 4GB memory
  • Large - 4x 1.7ghz cores, 8GB memory
  • Extra large - 8x 1.7ghz cores, 16GB memory

Notice how each subsequent VM on this list is twice as big as the previous one. This simplifies VM allocation, creation, and management by the hypervisor.

Windows Azure abstracts away the management and maintenance tasks that come along with traditional on-premise service implementations. When you deploy your service into Windows Azure and the service's roles are spun up, copies of those roles are replicated automatically to handle failover (for example, if a VM were to crash because of hard drive failure). When a failure occurs, Windows Azure automatically replaces that "unreliable" role with one of the "shadow" roles that it originally created for your service. This type of failover is nothing new. On-premise service implementations have been leveraging it for some time using clustering and disaster recovery solutions. However, a common problem with these failover mechanisms is that they are often server-focused. This means that the entire server is failed over, not just a given service or service composition.

When you have multiple services hosted on a Web server that crashes, each hosted service experiences downtime between the current server crashing and the time it takes to bring up the backup server. Although this may not affect larger organizations with sophisticated infrastructure too much, it can impact smaller IT enterprises that may not have the capital to invest in setting up the proper type of failover infrastructure.

Also, suppose you discover in hindsight after performing the failover that it was some background worker process that caused the crash. This probably means that unless you can address it quick enough, your failover server is under the same threat of crashing.

Windows Azure addresses this issue by focusing on application and hosting roles. Each service or solution can have a Web frontend that runs in a Web role. Even though each role has its own "active" virtual machine (assuming we are working with single instances), Windows Azure creates copies of each role that are physically located on one or more servers. These servers may or may not be running in the same data center. These shadow VMs remain idle until they are needed.

Should the background process code crash the worker role and subsequently put the underlying virtual machine out of commission, Windows Azure detects this and automatically brings in one of the shadow worker roles. The faulty role is essentially discarded. If the worker role breaks again, then Windows Azure replaces it once more. All of this is happening without any downtime to the solution's Web role front end, or to any other services that may be running in the cloud.

Input Endpoints
Web roles used to be the only roles that could receive Internet traffic, but now worker roles can listen to any port specified in the service definition file. Internet traffic is received through the use of input endpoints. Input endpoints and their listening ports are declared in the service definition (*.csdef) file.

Keep in mind that when you specify the port for your worker role to listen on, Windows Azure isn't actually going to assign that port to the worker. In reality, the load balancer will open two ports-one for the Internet and the other for your worker role. Suppose you wanted to create an FTP worker role and in your service definition file you specify port 21. This tells the fabric load balancer to open port 21 on the Internet side, open pseudo-random port 33476 on the LAN side, and begin routing FTP traffic to the FTP worker role.

In order to find out which port to initialize for the randomly assigned internal port, use the RoleEnvironment.CurrentRoleInstance.InstanceEndpoints["FtpIn"].IPEndpoint object.

Inter-Role Communication
Inter-Role Communication (IRC) allows multiple roles to talk to each other by exposing internal endpoints. With an internal endpoint, you specify a name instead of a port number. The Windows Azure application fabric will assign a port for you automatically and will also manage the name-to-port mapping.

Here is an example of how you would specify an internal endpoint for IRC:

<ServiceDefinition xmlns=
"http://schemas.microsoft.com/ServiceHosting/2008/10/
ServiceDefinition" name="HelloWorld">
<WorkerRole name="WorkerRole1">
<Endpoints>
<InternalEndpoint name="NotifyWorker" protocol="tcp" />
</Endpoints>
</WorkerRole>
</ServiceDefinition>

Example 1
In this example, NotifyWorker is the name of the internal endpoint of a worker role named WorkerRole1. Next, you need to define the internal endpoint, as follows:

RoleInstanceEndpoint internalEndPoint =
RoleEnvironment.CurrentRoleInstance.
InstanceEndpoints["NotificationService"];
this.serviceHost.AddServiceEndpoint(
typeof(INameOfYourContract),
binding,
String.Format("net.tcp://{0}/NotifyWorker",
internalEndPoint.IPEndpoint));
WorkerRole.factory = new ChannelFactory<IClientNotification>(binding);

Example 2
You only need to specify the IP endpoint of the other worker role instances in order to communicate with them. For example, you could get a list of these endpoints with the following routine:

var current = RoleEnvironment.CurrentRoleInstance;
var endPoints = current.Role.Instances
.Where(instance => instance != current)
.Select(instance => instance.InstanceEndpoints["NotifyWorker"]);

Example 3
IRC only works for roles in a single application deployment. Therefore, if you have multiple applications deployed and would like to enable some type of cross-application role communication, IRC won't work. You will need to use queues instead.

Summary of Key Points

  • Windows Azure roles represent different types of supported applications or services.
  • There are two types of roles: Web roles and worker roles.
  • Each role is assigned its own VM.

•   •   •

This excerpt is from the book, "SOA with .NET & Windows Azure: Realizing Service-Orientation with the Microsoft Platform", edited and co-authored by Thomas Erl, with David Chou, John deVadoss, Nitin Ghandi, Hanu Kommapalati, Brian Loesgen, Christoph Schittko, Herbjörn Wilhelmsen, and Mickie Williams, with additional contributions from Scott Golightly, Daryl Hogan, Jeff King, and Scott Seely, published by Prentice Hall Professional, June 2010, ISBN 0131582313, Copyright 2010 SOA Systems Inc. For a complete Table of Contents please visit: www.informit.com/title/0131582313

Authors
David Chou is a technical architect at Microsoft and is based in Los Angeles. His focus is on collaborating with enterprises and organizations in such areas as cloud computing, SOA, Web, distributed systems, and security.

John deVadoss leads the Patterns & Practices team at Microsoft and is based in Redmond, WA.

Thomas Erl is the world's top-selling SOA author, series editor of the Prentice Hall Service-Oriented Computing Series from Thomas Erl (www.soabooks.com), and editor of the SOA Magazine (www.soamag.com).

Nitin Gandhi is an enterprise architect and an independent software consultant, based in Vancouver, BC.

Hanu Kommalapati is a Principal Platform Strategy Advisor for a Microsoft Developer and Platform Evangelism team based in North America.

Brian Loesgen is a Principal SOA Architect with Microsoft, based in San Diego. His extensive experience includes building sophisticated enterprise, ESB and SOA solutions.

Christoph Schittko is an architect for Microsoft, based in Texas. His focus is to work with customers to build innovative solutions that combine software + services for cutting edge user experiences and the leveraging of service-oriented architecture (SOA) solutions.

Herbjörn Wilhelmsen is a consultant at Forefront Consulting Group, based in Stockholm, Sweden. His main areas of focus are Service-Oriented Architecture, Cloud Computing and Business Architecture.

Mickey Williams leads the Technology Platform Group at Neudesic, based in Laguna Hills,

Contributors
Scott Golightly is currently an Enterprise Solution Strategist with Advaiya, Inc; he is also a Microsoft Regional Director with more than 15 years of experience helping clients to create solutions to business problems with various technologies.

Darryl Hogan is an architect with more than 15 years experience in the IT industry. Darryl has gained significant practical experience during his career as a consultant, technical evangelist and architect.

As a Senior Technical Product Manager at Microsoft, Kris works with customers, partners, and industry analysts to ensure the next generation of Microsoft technology meets customers' requirements for building distributed, service-oriented solutions.

Jeff King has been working with the Windows Azure platform since its first announcement at PDC 2008 and works with Windows Azure early adopter customers in the Windows Azure TAP

Scott Seely is co-founder of Tech in the Middle, www.techinthemiddle.com, and president of Friseton, LLC.

More Stories By Thomas Erl

Thomas Erl is a best-selling IT author and founder of Arcitura Education Inc., a global provider of vendor-neutral educational services and certification that encompasses the Cloud Certified Professional (CCP) and SOA Certified Professional (SOACP) programs from CloudSchool.com™ and SOASchool.com® respectively. Thomas has been the world's top-selling service technology author for nearly a decade and is the series editor of the Prentice Hall Service Technology Series from Thomas Erl, as well as the editor of the Service Technology Magazine. With over 175,000 copies in print world-wide, his eight published books have become international bestsellers and have been formally endorsed by senior members of many major IT organizations and academic institutions. To learn more, visit: www.thomaserl.com

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...