Click here to close now.

Welcome!

Security Authors: Liz McMillan, Elizabeth White, Pat Romanski, John Wetherill, Ed Featherston

Related Topics: Java, XML, Microservices Journal, AJAX & REA, Apache, Security

Java: Article

Designing a Java Cryptography Header

Encrypt personal files, exchange confidential messages and authenticate the sender

Designing and implementing a hybrid encryption application is a big challenge but without a supporting infrastructure it's almost impossible. There are open source libraries that allow you to encrypt a file but only provide the translation technique. After the information has been encrypted, how do you know what algorithm was used, who you encrypted it, what version did you used, etc. In order to decrypt the protected message or file, a well-defined cryptographic header provides all the information required. This also applies if the encrypted data is digitally signed and the recipient wants to validate the signature.

This article will address one of the critical components of a support infrastructure by providing a design of a cryptographic header used to precede encrypted and/or digitally signed messages and files. The header is used within an application known as DocuArmor that was written using Java and the Cryptography library from the BouncyCastle organization and designed by Logical Answers Inc. The header will store information used when encrypting and/or digitally signing a message or file and allow the recipient to decrypt the information and/or verify the digital signature. With a properly designed header, a person can encrypt their personal files as well as exchange confidential messages and authenticate the sender.

Hybrid Encryption
In order to encrypt personal files and exchange protected data, we use a hybrid technique with two types of encryption, symmetric and asymmetric.

Symmetric encryption uses a single key to hide the message and reveal the message. There are several symmetric algorithms available such as AES (the Advanced Encryption Standard) but the important thing to remember is that the file can be encrypted and decrypted using the same key. An example is the Caesar cipher that shifts the letters of the alphabet by a specific number. If the shift is 2 (single key) then we get the following translation; a=c, b=d, c=e, ..., z=b.

Asymmetric encryption uses a pair of keys (public, private) to hide and reveal the message and the RSA algorithm is most commonly used. The RSA algorithm was credited in 1977 to Ronald Rivest, Adi Shamir, and Leonard Adleman. Sometimes referred to as Public Key Infrastructure (PKI), the pubic key is used to encrypt data and the private key is used to decrypt data.

Figure 1: Public and Private Key Functions

The hybrid technique uses the symmetric key to encrypt a file. The asymmetric public key is used to encrypt the symmetric key and is placed in the header. When the recipient receives an encrypted file, the encrypted symmetric key is extracted from the header. The encrypted symmetric key is decrypted using the private key. The file is decrypted using the symmetric key.

The same pair of keys can be used with digital signatures. The private key is used to generate a digital signature from a file and inserted into the header. The public key is used to verify the authenticity of the signature.

When two people want to exchange encrypted files, they each generate a pair of asymmetric keys and exchange a copy of their public keys. By using the other person's public key, they can encrypt a file, storing the cryptographic information in the header and then e-mail it to the recipient. The recipient will use the header to extract a symmetric key with their private key and decrypt the accompanying file. If a digital signature is included, the recipient can authenticate the sender.

Figure 2: Exchange of Encrypted Files

Cryptographic Header
When a file is encrypted, digitally signed or both, a Cryptographic header is placed in front of the resulting file and has the following structure. The structure consists of two sections, the header and the encrypted/plain file contents.

Figure 3: Encrypted File Structure

The header structure contains information required to reverse the encryption process and decrypt the contents of the file or verify the digital signature. The header contains the total length, an ID, version, and two sections containing encryption and digital signature information. Using Java, you can write out the contents of header within a byte stream as well as read it back in.

Figure 4: Cryptographic Header Structure

  • Total Len: Contains the total length of the header (stored as a 4 byte integer)
  • Header ID: Contains the string "LAHEADER" to identify the file (16 bytes)
  • Header Version: Structural version of the header (stored as a 4 byte integer)
  • Encryption Information: Holds the algorithm, mode, encrypted symmetric key, etc.
  • Digital Signature Information: Holds digital signature

Encryption Information
The Encryption Information structure contains information that was used to encrypt the contents of the file and later decrypt the file. The symmetric key and initialization vector is encrypted with the recipient's asymmetric public key. The recipient could be the owner if you are encrypting a file for yourself or another user you want to send confidential information to.

An additional field has been allocated to allow the encryption of the symmetric key with another set of asymmetric keys. For example, if owner A is sending an encrypted file to another person B, the symmetric key can be encrypted with B's public key as well as A's public key so that either person can decrypt the file.

Alternatively, an employee can encrypt a file with their public key and a corporation could insert an encrypted symmetric key into the header using their asymmetric keys. The corporation's asymmetric keys can be a Certifying Authority (CA), which can be used to issue employee keys.

Figure 5: Encryption Information Structure

  • Encrypt Flag: (Y/N - 2 bytes) specifies whether the file is encrypted.
  • Decrypt ID Length: (integer - 4 bytes) length in chars(bytes) of the Key ID.
  • Decrypt ID: (size varies) an identifier of the RSA keys used in the encryption/decryption process. It is the alias associated to the asymmetric encryption keys (e.g., JaneDoe_12ff).
  • Other Decrypt ID Length: (integer - 4 bytes) length in chars(bytes) of the Key ID.
  • Other Decrypt ID: (size varies) an identifier of the RSA keys used in the encryption/decryption process. It can be the alias or the common name (e.g., JaneDoe_12ff or Logical Answers CA).
  • Symmetric Key Algorithm: (integer - 4 bytes) specifies the symmetric key algorithm used to encrypt the file. The default value is 1=AES.
  • Symmetric Key Mode: (integer - 4 bytes) specifies the symmetric key block cipher mode used to enhance confidentiality. The default value is 5=Segmented Integer Counter mode (CTR).
  • Symmetric Key Padding: (integer - 4 bytes) specifies the type of padding for block cipher. The default value is 1=No Padding
  • Wrapped Symmetric Key Length: (integer - 4 bytes)
  • Wrapped Symmetric Key: (size varies) symmetric key used to encrypt/decrypt the file and encrypted with the asymmetric key.
  • Initialization Vector Length: (integer - 4 bytes)
  • Initialization Vector: (byte[] - size varies) vector used with the symmetric encryption process.
  • Other Wrapped Symmetric Key Length: (integer - 4 bytes)
  • Other Wrapped Symmetric Key: (size varies) symmetric key used to encrypt/decrypt the file and encrypted with another person's asymmetric key.
  • Other Initialization Vector Length: (integer - 4 bytes)
  • Other Initialization Vector: (byte[] - size varies) vector used with the symmetric encryption process.

Digital Signature Information
The Digital Signature Information structure contains information used to add or verify a digital signature generated from the contents of the file. The digital signature is generated with the owner's private key using a specific algorithm and then inserted into the header. When the recipient receives the signed file, they can use the signer's public key to validate its authenticity. If the signature is authenticated, it implies the file has not been altered and the holder of the private key generated the signature.

Figure 6: Digital Signature Information Structure

  • Signed Flag: (Y/N - 2 bytes) specifies whether the file contains a digital signature
  • Signature Algorithm: (integer - 4 bytes) specifies the algorithm used to generate the digital signature. The default value is 12= SHA512WithRSAEncryption
  • Verify Signature Cert Name Length: (integer - 4 bytes) length in chars(bytes) of the filename of the certificate used to verify a digital signature
  • Verify Signature Cert Name: (size varies) filename of the certificate holding the RSA public key used to verify the digital signature of a file (e.g., JaneDoe_fa39.cer).
  • Signature Date/Time: (long - 8 bytes) date the digital signature was generated.
  • Signature Length: (integer - 4 bytes)
  • Signature: (size varies) holds digital signature generated with RSA private key and signature engine

File Naming Conventions
The Cryptographic header holds information that designates which keys were used to encrypt a file but it's not physically accessible without reading it in first. With proper naming conventions, you can determine who the intended recipient is for encrypted files - whether it is for yourself or a colleague. When you generate your pair of asymmetric encryption keys using Java, store them in a file called a key store. The key store holds a pair of asymmetric keys as an entry with a unique alias. The alias typically consists of the initial of your first name and your last name. To make it more unique, you can extract 4 hex digits from your public key and append an underline and the hex digits to the alias. For example, if the person's name was Jane Smith, then the resulting unique alias would be jsmith_ad5e. A certificate holds a person's public key and the alias would be used in the filename, as jsmith_ad5e.cer. Similarly, the key store holding the pair of asymmetric keys would be saved as, jsmith_ad5e.jks.

Following the unique alias analogy, Jane Smith could encrypt files for herself and the file name would be appended with her alias and an appropriate file extension. For example, if Jane encrypted a personal file, myTaxes.txt, then the result would be myTaxes.txt.jsmith_ad5e.aes. If Jane wanted to send her colleague Dick an encrypted document, she would use Dick's certificate to encrypt it. If Dick's certificate is djones_9fa2, Jane could encrypt the file, comments.doc, for Dick and the resulting file would be comments.doc.djones_9fa2.aes. When Dick receives the file, he knows it is for him by recognizing his alias on the file name.

The unique alias is stored within the header. This reinforces the importance of having a well-defined Cryptographic header for implementing encryption within your applications.

Benefits
A well-defined cryptographic header stores the information required to encrypt, decrypt and digitally sign a file. Along with facilitating the implementation of standard cryptographic functions, the header also provides the following benefits:

  • The header allows for the protection of personal files as well as the exchange of confidential data.
  • Using the stored digital signature, the recipient can determine if the sender is valid and whether file has been altered.
  • The header allows either the sender or recipient to decrypt the encrypted file since both would encrypt the symmetric key with their public key.
  • Using the concept of a Certifying Authority pair of asymmetric keys, a corporation, group, or family could issue pairs of asymmetric keys to their employees or members and decipher files encrypted by them in case of emergencies.
  • The header allows for using different combinations of symmetric algorithms, modes, padding and key sizes to be used to encrypt information.
  • The header version allows for enhancements to be added to the structure for implementing new functions and still support older versions.

References and Other Technical Notes
Software requirements:

Recommended Reading:

  • "Beginning Cryptography with Java" by David Hook.
  • "The Code Book" by Simon Singh

More Stories By James H. Wong

James H. Wong has been involved in the technology field for over 30 years and has dual MS degrees in mathematics and computer science from the University of Michigan. He worked for IBM for almost 10 years designing and implementing software. Founding Logical Answers Corp in 1992, he has provided technical consulting/programming services to clients, providing their business with a competitive edge. With his partner they offer a Java developed suite of “Secure Applications” that protect client’s data using the standard RSA (asymmetric) and AES (symmetric) encryption algorithms.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
The Workspace-as-a-Service (WaaS) market will grow to $6.4B by 2018. In his session at 16th Cloud Expo, Seth Bostock, CEO of IndependenceIT, will begin by walking the audience through the evolution of Workspace as-a-Service, where it is now vs. where it going. To look beyond the desktop we must understand exactly what WaaS is, who the users are, and where it is going in the future. IT departments, ISVs and service providers must look to workflow and automation capabilities to adapt to growing demand and the rapidly changing workspace model.
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo – to be held June 9-11, 2015, at the Javits Center in New York City, NY – is now accepting Hackathon proposals. Hackathon sponsorship benefits include general brand exposure and increasing engagement with the developer ecosystem. At Cloud Expo 2014 Silicon Valley, IBM held the Bluemix Developer Playground on November 5 and ElasticBox held the DevOps Hackathon on November 6. Both events took place on the expo floor. The Bluemix Developer Playground, for developers of all levels, highlighted the ease of use of...
We’re no longer looking to the future for the IoT wave. It’s no longer a distant dream but a reality that has arrived. It’s now time to make sure the industry is in alignment to meet the IoT growing pains – cooperate and collaborate as well as innovate. In his session at @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, will examine the key ingredients to IoT success and identify solutions to challenges the industry is facing. The deep industry expertise behind this presentation will provide attendees with a leading edge view of rapidly emerging IoT oppor...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
For years, we’ve relied too heavily on individual network functions or simplistic cloud controllers. However, they are no longer enough for today’s modern cloud data center. Businesses need a comprehensive platform architecture in order to deliver a complete networking suite for IoT environment based on OpenStack. In his session at @ThingsExpo, Dhiraj Sehgal from PLUMgrid will discuss what a holistic networking solution should really entail, and how to build a complete platform that is scalable, secure, agile and automated.
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
Hadoop as a Service (as offered by handful of niche vendors now) is a cloud computing solution that makes medium and large-scale data processing accessible, easy, fast and inexpensive. In his session at Big Data Expo, Kumar Ramamurthy, Vice President and Chief Technologist, EIM & Big Data, at Virtusa, will discuss how this is achieved by eliminating the operational challenges of running Hadoop, so one can focus on business growth. The fragmented Hadoop distribution world and various PaaS solutions that provide a Hadoop flavor either make choices for customers very flexible in the name of opti...
In the consumer IoT, everything is new, and the IT world of bits and bytes holds sway. But industrial and commercial realms encompass operational technology (OT) that has been around for 25 or 50 years. This grittier, pre-IP, more hands-on world has much to gain from Industrial IoT (IIoT) applications and principles. But adding sensors and wireless connectivity won’t work in environments that demand unwavering reliability and performance. In his session at @ThingsExpo, Ron Sege, CEO of Echelon, will discuss how as enterprise IT embraces other IoT-related technology trends, enterprises with i...