Welcome!

Cloud Security Authors: Liz McMillan, Elizabeth White, Pat Romanski, Zakia Bouachraoui, Yeshim Deniz

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, @CloudExpo, Cloud Security, SDN Journal

Containers Expo Blog: Blog Feed Post

Bare Metal Blog: Mean Time Between Failures

MTBF has meaning well beyond storage

If you are new to the Bare Metal Blog series, find them all here

When assembling a model – any model, from a highly detailed functional replica of an engine to a mass produced plastic model of an airplane – there are several places where things can go wrong. The final product is only as good as the model kit, the glue used, the tools used, and the skill of the craftsman. I’ve seen the same exact model assembled and painted by two different people that look completely different, simply because of the array of variables and how they interact.

This is true of high tech equipment also, and like modeling, it is often overlooked. Interestingly, in my entire IT career, MTBF has only been a measure that meant a ton in two circumstances: When designing hardware and scoping the parts to go in it, and when talking about storage. In all other endeavors, MTBF if mentioned was a side note.

And yet it matters. It can matter a lot. Like most hardware companies (because we spec our own parts and monitor our own quality), we track MTBF both computed from the sum of the parts with average environmental considerations, and actual tracking based upon support cases involving hardware and RMAs. For us, knowing helps us improve quality. For customers, knowing helps gauge the bounds of useful life for the equipment being purchased. Of course, MTBF is a mean, not a fact, and it is entirely possible for a device to last much longer than its MTBF, in fact the fact that it is a mean kind of implies that roughly half of the devices out there will last longer. But it’s the mean, not the median, and most IT shops do not want to plan like a device will last well beyond its MTBF value. MTBF can offer a bit of guidance when it is fairly calculated, and another tool in the evaluation toolbox never hurt an IT shop.

As mentioned earlier in this series, F5 sets quality standards for suppliers to meet, if they wish to continue supplying. This allows a bit better control over MTBF than doing something like “lowest bidder” or similar procurement, simply because the standards set include the quality of parts used, which all rolls into the MTBF calculations – and more importantly for most IT shops, the MTBF reality. While MTBF is a complex set of equations, you can generalize to “the MTBF of a device is as low as or lower than the MTBF of its weakest part”. That means supplier quality standards matter in a very real way. I had a RAID array fail on me once – several drives down all at the same time. The array vendor had to count that as a failure, since RAID no longer worked (thank heavens for backups!), but the failure was on the part of one of their suppliers. That’s how it is in the manufacturing world whomevers’ name is on the box gets the bad rep for quality, regardless of whose handiwork was slipshod. That is why F5’s non-stop quality monitoring program (devices are tested from before release until EOL is announced) matters a lot. It’s also why quality standards for parts suppliers matter more then getting the absolute cheapest part, as some manufacturers are wont to do.

I will not replicate our entire knowledge base article here, if you have an ask.f5.com account, you can click here to read it. I’ll just summarize and pull bits out for the readers’ enjoyment.

F5 gear runs the gauntlet from entry level to massive blade systems. As such, MTBF varies from device to device. The worst calculated MTBF for an F5 device is over three years. And our quality team tells me that the calculated value is far lower than the real-life-experience value they get from watching returns and such. The best calculated MTBF is over 21 years. It’s a rare piece of computer gear that is used that long, but Lori and I have got some pretty old F5 gear that’s still clipping away like it was new, so no surprises there. Most F5 devices fall somewhere in between.

Why the large variance in MTBFs if we control for quality? A valid question. The fact is that it is not all about the quality of parts. Airflow inside the device, number of redundant parts, number of removable parts… there are a zillion other things that go into MTBF, and they all tend to get better as the device gets physically larger. Entry level devices are small, restricting airflow and cutting down on available space for redundant power supplies, etc. While the top end blade servers have room for all of that, and since cards are replaceable, tend to less failures. You will find a similar spread with any other vendor that covers such a wide range of hardware. And all of those numbers are likely to beat out a COTS server running a software product.

So when looking at any electronic gear, ask about MTBF. Alone it simply gives you insight into the priorities for the device you’re looking at, when combined with the MTBF numbers from several different devices (the same manufacturer or multiple), it gives you an idea of what you are buying in terms of quality. Of course with a large chunk of any given appliance handled in software, MTBF is not as meaningful as it once was, but it is still the underlying bedrock for that software to run on.

Read the original blog entry...

More Stories By Don MacVittie

Don MacVittie is founder of Ingrained Technology, A technical advocacy and software development consultancy. He has experience in application development, architecture, infrastructure, technical writing,DevOps, and IT management. MacVittie holds a B.S. in Computer Science from Northern Michigan University, and an M.S. in Computer Science from Nova Southeastern University.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...