Welcome!

Security Authors: Elizabeth White, Pat Romanski, Liz McMillan, Vincent Brasseur, Gilad Parann-Nissany

Related Topics: Security, Java, SOA & WOA, Linux, Virtualization, Cloud Expo, Big Data Journal, SDN Journal, @ThingsExpo

Security: Article

ARM Server to Transform Cloud and Big Data to "Internet of Things"

New Microserver computing platform offers compelling benefits for the right applications

A completely new computing platform is on the horizon. They're called Microservers by some, ARM Servers by others, and sometimes even ARM-based Servers. No matter what you call them, Microservers will have a huge impact on the data center and on server computing in general.

What Is a Microserver...and What Isn't
Although few people are familiar with Microservers today, their impact will be felt very soon. This is a new category of computing platform that is available today and is predicted to have triple-digit growth rates for some years to come - growing to over 20% of the server market by 2016 according to Oppenheimer ("Cloudy With A Chance of ARM" Oppenheimer Equity Research Industry Report).

According to Chris Piedmonte, CEO of Suvola Corporation - a software and services company focused on creating preconfigured and scalable Microserver appliances for deploying large-scale enterprise applications, "the Microserver market is poised to grow by leaps and bounds - because companies can leverage this kind of technology to deploy systems that offer 400% better cost-performance at half the total cost of ownership. These organizations will also benefit from the superior reliability, reduced space and power requirements, and lower cost of entry provided by Microserver platforms".

This technology might be poised to grown, but today, these Microservers aren't mainstream at all - having well under 1% of the server market. Few people know about them. And there is a fair amount of confusion in the marketplace. There isn't even agreement on what to call them: different people call them different things - Microserver, ARM Server, ARM-based Server and who knows what else.

To further confuse the issue, there are a number of products out there in the market that are called "Microservers" that aren't Microservers at all - for example the HP ProLiant MicroServer or the HP Moonshoot chassis. These products are smaller and use less power than traditional servers, but they are just a slightly different flavor of standard Intel/AMD server that we are all familiar with. Useful, but not at all revolutionary - and with a name that causes unfortunate confusion in the marketplace.

Specifically, a Microserver is a server that is based on "system-on-a-chip" (SoC) technology - where the CPU, memory and system I/O and such are all one single chip - not multiple components on a system board (or even multiple boards).

What Makes ARM Servers Revolutionary?
ARM Servers are an entirely new generation of server computing - and they will make serious inroads into the enterprise in the next few years. A serious innovation - revolutionary, not evolutionary.

These new ARM Server computing platforms are an entire system - multiple CPU cores, memory controllers, input/output controllers for SATA, USB, PCIe and others, high-speed network interconnect switches, etc. - all on a SINGLE chip measuring only one square inch. This is hyperscale integration technology at work.

To help put this into context, you can fit 72 quad-core ARM Servers into the space used by a single traditional server board.

Today's traditional server racks are typically packed with boards based on Intel XEON or AMD Opteron chips and are made up of a myriad of discrete components. They're expensive, powerful, power-hungry, use up a considerable amount of space, and can quickly heat up a room to the point where you might think you're in a sauna.

In contrast, the ARM Servers with their SoC design are small, very energy efficient, reliable, scalable - and incredibly well-suited for a wide variety of mainstream computing tasks dealing with large numbers of users, data and applications (like Web services, data crunching, media streaming, etc.). The SoC approach of putting an entire system on a chip, results in a computer that can operate on as little as 1.5 watts of power.

Add in memory and a solid-state "disk drive" and you could have an entire server that runs on under 10 watts of power. For example, Calxeda's ECX-1000 quad-core ARM Server node with built-in Ethernet and SATA controllers, and 4GB of memory uses 5 watts at full power. In comparison, my iPhone charger is 7 watts and the power supply for the PC on my desk is 650 watts (perhaps that explains the $428 electric bill I got last month).

ARM Server Microserver

Realistically, these ARM Servers use about 1/10th the power, and occupy considerably less than 1/10th the space of traditional rack-mounted servers (for systems of equivalent computing power). And at an acquisition price of about half of what a traditional system costs.

And they are designed to scale - the Calxeda ECX-1000 ARM Servers are packaged up into "Energy Cards" - composed of four quad-core chips and 16 SATA ports. They are designed with scalability in mind - they embed an 80 gigabit per second interconnect switch, which allows you to easily connect potentially thousands of nodes without all the cabling inherent in traditional rack-mounted systems (a large Intel-based system could have upwards of 2,000 cables). This also provides for extreme performance - node to node communication occurs on the order of 200 nanoseconds.

You can have four complete ARM Servers on a board that is only ten inches long and uses only about 20 watts of power at full speed - that's revolutionary.

How Do ARM Servers Translate into Business Benefits?
When you account for reduced computing center operations costs, lower acquisition costs, increased reliability due to simpler construction / fewer parts, and less administrative cost as a result of fewer cables and components, we're talking about systems that could easily cost 70% less to own and operate.

If you toss in the cost to actually BUILD the computing center and not just "operate it", then the cost advantage is even larger. That's compelling - especially to larger companies that spend millions of dollars a year building and operating computing centers. Facebook, for example, has been spending about half a billion (yes, with a "b") dollars a year lately building and equipping their computing centers. Mobile devices are driving massive spending in this area - and in many cases, these are applications which are ideal for ARM Server architectures.

Why Don't I See More ARM Servers?
So - if all this is true, why do Microservers have such a negligible market share of the Server market?

My enthusiasm for ARM Servers is in their potential. This is still an early-stage technology and Microserver hardware really has only been available since the last half of 2012. I doubt any companies are going to trade in all their traditional rack servers for Microservers this month. The "eco-system" for ARM Servers isn't fully developed yet. And ARM Servers aren't the answer to every computing problem - the hardware has some limitations (it's 32 bit, at least for now). And it's a platform better suited for some classes of computing than others. Oh, and although it runs various flavors of Linux, it doesn't run Windows - whether that is a disadvantage depends on your individual perspective.

Microservers in Your Future?
Irrespective of these temporary shortcomings, make no mistake - this is a revolutionary shift in the way that server systems will be (and should be) designed. Although you personally may never own one of these systems, within the next couple of years, you will make use of ARM Servers all the time - as they have the potential to shrink the cost of Cloud Computing, "Big Data", media streaming and any kind of Web computing services to a fraction of the cost of what they are today.

Keep your eye on this little technology - it's going to be big.


Note: The author of this article works for Dell. The opinions stated are his own personal opinions vs. those of his employer.

@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.