Security Authors: Elizabeth White, Gilad Parann-Nissany, Nikita Ivanov, Pat Romanski, Jim Kaskade

Related Topics: Cloud Expo, Java, SOA & WOA, Security, Big Data Journal, SDN Journal

Cloud Expo: Blog Post

Traffic Advisory: Your Packets May Be Delayed

The past few years have seen a dramatic improvement in the latency in network switches

The past few years have seen a dramatic improvement in the latency in network switches. Single ASIC based switches can all pretty much switch packets in less than a microsecond. Current 10GE switching silicon provides anywhere from 300 to 800 nanoseconds, specialized silicon shaves that to less than 200 nanoseconds when limiting the amount of searching that needs to be done by reducing the size of lookup tables. Even other solutions play some smart tricks by providing forwarding hints for intermediate switches make those lookups take less than 50 nanoseconds.


Modular switches inherently have a higher latency. Line cards on modular switches typically have multiple ASICs, those ASICs are connected through a single or multi stage fabric. Each step takes time, resulting in latencies varying from around a microsecond when a packet stays on the same ASIC, to possibly 5-15 microseconds when a packet needs to travel through the fabric and back.

The speediest of ASICs achieve these low numbers by employing cut through switching. Cut through switching allows the ASIC to start transmitting a packet when enough of the header has been received to make a forwarding decision. The ASIC does not wait for the entire packet to be received (the more traditional store-and-forward mechanism), within the first few 100 bytes the forwarding decision has been made, and that same header (modified or not) is being transmitted out the destination port. It's somewhat odd to think that through, but the first bits of a packet may be received by the destination system before the last bits have left the first switch in the network.

Cut through switching comes with quite a few "buts". Most switches can only deploy cut through switching when the source and destination port are the same speed. 10GE in and 40GE out or vice versa is rarely supported and the ASIC will automatically switch to store-and-forward for those packets. For good reason. If a packet comes at you at 40GE rates, you simply cannot transmit it out a 10GE interface, that interface is not fast enough. In the reverse direction speed is not the issue, but if you were to employ cut through switching, for the duration of that packet your 40GE interface effectively runs at 10GE with lots of pauses in between pieces of a packet (figuratively speaking).

In addition, when the destination port has another packet being transmitted or in the queue, a new packet cannot be sent cut through. When another packet is ahead of you, you need to wait. And you may need to wait for quite a while. We often forget that it takes 1.2 microseconds to transmit a 1500 byte packet on a 10GE interface, more than 7 microseconds for a jumbo packet. When the destination port is being paused due to Data Center Bridging Priority Flow Control (PFC), the packet will be queued for store and forward. And make sure you add an extra 3 microseconds for 10GBASE-TX.

Datacenters are on a path to fewer layers of switching. Spine and leaf networks are being pitched as the best performing, low cost solution for dense networks. If you carefully examine the specs and pitches of some of the newer spine switches, you will notice that all of them make a case for deep buffers. Deep buffers assume that this switch needs to manage congestion by buffering packets, why else would you design expensive and power hungry buffer memory into those switches. Buffering and low latency don't go well together. If your spine and leaf network has nothing much to do, you may well see latency numbers of only a few microseconds or better. If the spine layer needs to buffer your packet, this number can jump up quickly to 10s of microseconds. And those large buffers seem to suggest it will.

There certainly are applications that are very sensitive to latency. Financial institution low latency trading networks are the example always used, and there are High Performance Computing environments with database, RDMI or similar applications that benefit from really low latency. Engineering the traffic in such a way that none of the low latency disruptive events described above happen is hard. Really hard. Extremely hard if there is a lot of traffic. Or a lot of endpoints. Networks that are specifically designed to aggregate and distribute (spine and leaf) will be more prone to these latency increasing scenarios. Creating a network with the ability to create isolated direct paths between switches that serve low latency applications is much more likely to avoid these. And even if the absolute latency is not the lowest, consistent latency with little jitter will certainly help the performance of adaptive mechanisms like TCP.

For the vast majority of applications in a typical enterprise datacenter, or a public cloud provider, the difference between 200 nanosecond switch latency and 1 microseconds is not measurably different in terms of user or application performance. The set of applications that behave noticably different at a few microseconds vs 10s of microseconds end to end latency is probably larger. I argue that you will get better results by carefully engineering the traffic for the applications that do care about low latency and low jitter. Make sure they get the bandwidth they need. Make sure they do not clash in the network with data hungry applications. Affinitize your network. It may just give you the latency and jitter performance you need.

The post Traffic advisory: your packets may be delayed appeared first on Plexxi.

Read the original blog entry...

More Stories By Marten Terpstra

Marten Terpstra is a Product Management Director at Plexxi Inc. Marten has extensive knowledge of the architecture, design, deployment and management of enterprise and carrier networks.

@ThingsExpo Stories
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
There's Big Data, then there's really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at Big Data Expo®, Hannah Smalltree, Director at Treasure Data, discussed how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...