Welcome!

Security Authors: Liz McMillan, Vincent Brasseur, Pat Romanski, Elizabeth White, Gilad Parann-Nissany

Related Topics: SDN Journal, SOA & WOA, Virtualization, Cloud Expo, Security

SDN Journal: Blog Post

Overlay Entropy

A Plexxi solution provides an optimized L1, L2 and L3 network

There have been many articles describing overlay networks in the past few quarters. It's a relatively straightforward concept, not far removed from some of the older VPN technologies very popular a while ago. The actual transport of packets is probably the simplest, it is the control plane that is much harder to construct and therefore explain. It is therefore also that the control plane in overlay networks has seen the most innovation and change, and is likely to change some more in standard and proprietary ways in the next little while. A perfect example is the use of IP Multicast for unknown, multicast and broadcast traffic as defined in the latest IETF draft for VXLAN, but controller implementations try and avoid IP Multicast as part of the necessary data path. Which will continue to lead to changes in the control plane for learning, distribution of destinations, etc.

A Plexxi solution provides an optimized L1, L2 and L3 network. With the advent of overlay networks, the relationship and interaction between the physical, L2 and L3 network and the overlay infrastructure is important to understand. We strongly believe the control and data planes should be interconnected and coordinated/orchestrated. In this and next week’s blog, I will describe some key touch points of the two at the data plane: entropy as a mechanism to discern flow like information and the role and capabilities of a hardware gateway.

I looked at VXLAN, NVGRE and STT as the major overlay encapsulations. VXLAN and STT are very much driven by VMWare, with STT used as the tunnel encapsulation between vSwitch based VXLAN Tunnel End Points (VTEP), VXLAN used as the tunnel encapsulation to external entities like gateways. NVGRE of course is the tunnel protocol of choice for Microsoft’s overlay solution and very similar to to previous GRE based encapsulations. All encapsulations are IP based, allowing the tunnels to be transported across a basic IP infrastructure (with the above mentioned note for IP Multicast). VXLAN and NVGRE are packet based mechanisms, each original packet ends up being encapsulated into a new packet.

VXLAN is build on top of UDP. As shown below, an encapsulated ethernet packet has 54 bytes of new header information added (assuming it is being transported again over ethernet). The first 18 bytes contain the ethernet header containing the MAC address of the source VTEP and its next IP destination, most likely the next IP router/switch. This header changes at each IP hop. The next 20 bytes contain the IP header. The protocol is set to 17 for UDP. The source IP address is that of the originating VTEP, the destination IP address that of the destination VTEP. The IP header is followed by 8 bytes of UDP header containing source UDP port, destination UDP port (4789) and the usual UDP length and checksum fields. While formatted in a normal way, the UDP source port is used in a special way to create “entropy”, explained in more detail below.

VXLAN Packet Format2

A VXLAN Encapsulated Ethernet Packet

Following the UDP header is the actual 8 byte VXLAN header. Just about all fields except the 24 bit VXLAN Network Identifier (VNI) are reserved and set to zero. The VNI is key, it determines which VXLAN the original packet belongs to. When the destination VTEP receives this packet and decapsulates it, it will use this to find the right table to use for MAC address lookups of the original packet to get it to its destination. Only the original packets (shown with Ethernet headers above) follows the VXLAN header. For every packet sent out by a VM, VXLAN adds 54 bytes of new tunnel headers between the source and destination VTEP. Intermediate systems do all their forwarding based on this new header: ethernet switches will use the Outer Ethernet header, IP routers will use the Outer IPv4 header to route this packet towards its destination. Each IP router will replace the Outer Ethernet header with a new one representing itself as the source, and the next IP router as the destination.

NVGRE packets look very similar to VXLAN packets. The initial Outer Ethernet header is the same as VXLAN, representing the source tunnel endpoint and the first IP router as the source and destination. The next 20 bytes of IP header are also similar to VXLAN, except that the protocol is 47 for GRE. NVGRE encodes the Virtualized LAN (Virtual Subnet ID or VSID in NVGRE terms) inside the GRE header, using 24 bits of the original GRE Key field to represent the VSID, leaving 8 bits for a FlowID field, which serves a similar entropy function as the UDP source port for VXLAN, explain further below. The VSID in NVGRE and VNI in VXLAN represent the overlay virtual network ID for each of the technologies. Following the GRE header, the original (Ethernet) packet. NVGRE added 46 bytes of new header information to existing packets.

NVGRE Packet Format2

A NVGRE Encapsulated Ethernet Packet

As I mentioned in last week’s blog, a tunnel endpoint is an aggregation point and as a result, all of the individual flows that are put into a specific VTEP to VTEP tunnel go through the transport network based on the new headers that have been added. Many networks rely on some form of L2 or L3 ECMP to use all available bandwidth between any two points on the network, spine and leaf networks being the prime example of an absolute dependency on a very well functioning ECMP to perform at its best. Without discussing the virtues of ECMP again, tunneled packets need something in the new header that allows an hash calculation to make use of multiple ECMP paths. With pretty much all of the L2 and L3 header identical (except for the VNI or VSID) for all traffic between two tunnel endpoints, the creators of these encapsulations have been creative in encoding entropy in these new headers so that hash calculations for these headers can be used to place traffic onto multiple equal cost paths.

For VXLAN, this entropy is encoded in the UDP source port field. With only a single UDP VXLAN connection between any two endpoints allowed (and necessary), the source port is essentially irrelevant and can be used to mark a packet with a hash calculation result that in effect acts as a flow identifier for the inner packet. Except that it is not unique. The VXLAN spec does not specify exactly how to calculate this hash value, but its generally assumed that specific portions of the inner packet L2, L3 and/or L4 header are used to calculate this hash. The originating VTEP calculates this, puts it in the new UDP header as the source port, and it remains there unmodified until it arrives at the receiving VTEP. Intermediate systems that calculate hashes for L2 or L3 ECMP balancing typically use UDP ports as part of their calculation and as a result, different inner packet flows will result in different placement onto ECMP links. As mentioned, intermediate routers or switches that transport the VXLAN packet do not modify the UDP source port, they only use its value in their ECMP calculation.

NVGRE is fairly similar. GRE packets have no TCP or UDP header, and as a result network hardware typically has the ability to recognize these packets as GRE and use the 32-bit GRE key field as an information source in their ECMP calculations. GRE tunnel endpoints encode inner packet flows with individual (but not necessarily unique) key values, and as a result, intermediate network systems will calculate different hash results to place these inner packet flows onto multiple ECMP links. NVGRE has taken 24 of these bits to encode the VSID, but has left 8 bits to create this entropy at the tunnel endpoint, the field has been renamed FlowID. The VSID and FlowID combined will be used to calculate hashes for ECMP link placement. A possible challenge is that for networks that have many many flows inside a VSID between two specific NVGRE endpoints, the 8 bits worth of differentiation may not create a “normal” ECMP distribution.

While the packet formats have been constructed to ensure that the “normal” tools of entropy can be used for ECMP and LAG by existing switching hardware, the latest hardware platforms have the ability to look well beyond the outer headers. Many bits and pieces of the new headers can be examined and decisions can be made on them. While specific switching ASICs will have slightly different tools, the latest generations of them have he ability to look at VNI and VSID even when not acting as a gateway, and packet modification or forwarding decisions can be made on their value. Inner MAC and IP headers can also be examined and acted on, with a bit more complexity. Switching ASICs are built to have quick access to the most important fields to make decisions on, access to less common fields is there, but requires some manual construction by those that program the ASIC (the networking vendors).

When the switching platform is configured to be a gateway to provide bridging functions between regular VLANs and the tunneled VXLAN or NVGRE infrastructure, the ASIC has access to the entire original packet, since it actively encapsulates or decapsulates the original packet. That gives the switch decision choices very similar to a vSwitch, but at a smaller scale. More detail on the gateway function and STT next week.

The post Overlay Entropy appeared first on Plexxi.

Read the original blog entry...

More Stories By Marten Terpstra

Marten Terpstra is a Product Management Director at Plexxi Inc. Marten has extensive knowledge of the architecture, design, deployment and management of enterprise and carrier networks.

@ThingsExpo Stories
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...