Click here to close now.

Welcome!

Cloud Security Authors: Pat Romanski, Lori MacVittie, Liz McMillan, Elizabeth White, John Wetherill

Related Topics: Cloud Security, Java IoT, Linux Containers, @ContainersExpo Blog, Agile Computing, CloudExpo® Blog

Cloud Security: Blog Feed Post

Facebook Exploit Is Not Unique

Facebook isn't unique in the ability to use it to attack a third party, it's just more effective

This week's "bad news" with respect to information security centers on Facebook and the exploitation of HTTP caches to affect a DDoS attack. Reported as a 'vulnerability', this exploit takes advantage of the way the application protocol is designed to work. In fact, the same author who reports the Facebook 'vulnerability' has also shown you can use Google to do the same thing. Just about any site that enables you to submit content containing links and then retrieves those links for you (for caching purposes) could be used in this way. It's not unique to Facebook or Google, for that matter, they just have the perfect environment to make such an exploit highly effective.

The exploit works by using a site (in this case Facebook) to load content and takes advantage of the general principle of amplification to effectively DDoS a third-party site. This is a flood-based like attack, meaning it's attempting to overwhelm a server by flooding it with requests that voraciously consume server-side resources and slow everyone down - to the point of forcing it to appear "down" to legitimate users.

The requests brokered by Facebook are themselves 110% legitimate requests. The requests for an image (or PDF or large video file) are well-formed, and nothing about the requests on an individual basis could be detected as being an attack. This is, in part, why the exploit works: because the individual requests are wholly legitimate requests.

How it Works
The trigger for the "attack" is the caching service. Caches are generally excellent at, well, caching static objects with well-defined URIs. A cache doesn't have a problem finding /myimage.png. It's either there, or it's not and the cache has to go to origin to retrieve it. Where things get more difficult is when requests for content are dynamic; that is, they send parameters that the origin server interprets to determine which image to send, e.g. /myimage?id=30. This is much like an old developer trick to force the reload of dynamic content when browser or server caches indicate a match on the URL. By tacking on a random query parameter, you can "trick" the browser and the server into believing it's a brand new object, and it will go to origin to retrieve it - even though the query parameter is never used. That's where the exploit comes in.

HTTP servers accept as part of the definition of a URI any number of variable query parameters. Those parameters can be ignored or used at the discretion of the application. But when the HTTP server is looking to see if that content has been served already, it does look at those parameters. The reference for a given object is its URL, and thus tacking on a query parameter forces (or tricks if you prefer) the HTTP server to believe the object has never been served before and thus can't be retrieved from a cache.

Caches act on the same principles as an HTTP server because when you get down to brass tacks, a cache is a very specialized HTTP server, focused on mirroring content so it's closer to the user.

<img src=http://target.com/file?r=1>
<img src=http://target.com/file?r=2>
<img src=http://target.com/file?r=3>
...
<img src=http://target.com/file?r=1000>

Many, many, many, many (repeat as necessary) web applications are built using such models. Whether to retrieve text-based content or images is irrelevant to the cache. The cache looks at the request and, if it can't match it somehow, it's going to go to origin.

Which is what's possible with Facebook Notes and Google. By taking advantage of (exploiting) this design principle, if a note crafted with multiple image objects retrieved via a dynamic query is viewed by enough users at the same time, the origin can become overwhelmed or its network oversubscribed.

This is what makes it an exploit, not a vulnerability. There's nothing wrong with the behavior of these caches - they are working exactly as they were designed to act with respect to HTTP. The problem is that when the protocol and caching behavior was defined, such abusive behavior was not considered.

In other words, this is a protocol exploit not specific to Facebook (or Google). In fact, similar exploits have been used to launch attacks in the past. For example, consider some noise raised around WordPress in March 2014 that indicated it was being used to attack other sites by bypassing the cache and forcing a full reload from the origin server:

If you notice, all queries had a random value (like “?4137049=643182″) that bypassed their cache and force a full page reload every single time. It was killing their server pretty quickly.

 

But the most interesting part is that all the requests were coming from valid and legitimate WordPress sites. Yes, other WordPress sites were sending that random requests at a very large scale and bringing the site down.

The WordPress exploit was taking advantage of the way "pingbacks" work. Attackers were using sites to add pingbacks to amplify an attack on a third party site (also, ironically, a WordPress site).

It's not just Facebook, or Google - it's inherent in the way caching is designed to work.

Not Just HTTP
This isn't just an issue with HTTP. We can see similar behavior in a DNS exploit that renders DNS caching ineffective as protection against certain attack types. In the DNS case, querying a cache with a random host name results in a query to the authoritative (origin) DNS service. If you send enough random host names at the cache, eventually the DNS service is going to feel the impact and possibly choke.

In general, these types of exploits are based on protocol and well-defined system behavior. A cache is, by design, required to either return a matching object if found or go to the origin server if it is not. In both the HTTP and DNS case, the caching services are acting properly and as one would expect.

The problem is that this proper behavior can be exploited to affect a DDoS attack - against third-parties in the case of Facebook/Google and against the domain owner in the case of DNS.

These are not vulnerabilities, they are protocol exploits. This same "vulnerability" is probably present in most architectures that include caching. The difference is that Facebook's ginormous base of users allows for what is expected behavior to quickly turn into what looks like an attack.

Mitigating
The general consensus right now is the best way to mitigate this potential "attack" is to identify and either rate limit or disallow requests coming from Facebook's crawlers by IP address. In essence, the suggestion is to blacklist Facebook (and perhaps Google) to keep it from potentially overwhelming your site.

The author noted in his post regarding this exploit that:

Facebook crawler shows itself as facebookexternalhit. Right now it seems there is no other choice than to block it in order to avoid this nuisance.

The post was later updated to note that blocking by agent may not be enough, hence the consensus on IP-based blacklisting.

The problem is that attackers could simply find another site with a large user base (there are quite a few of them out there with the users to support a successful attack) and find the right mix of queries to bypass the cache (cause caches are a pretty standard part of a web-scale infrastructure) and voila! Instant attack.

Blocking Facebook isn't going to stop other potential attacks and it might seriously impede revenue generating strategies that rely on Facebook as a channel. Rate limiting based on inbound query volume for specific content will help mitigate the impact (and ensure legitimate requests continue to be served) but this requires some service to intermediate and monitor inbound requests and, upon seeing behavior indicative of a potential attack, the ability to intercede or apply the appropriate rate limiting policy. Such a policy could go further and blacklist IP addresses showing sudden increases in requests or simply blocking requests for the specified URI in question - returning instead some other content.

Another option would be to use a caching solution capable of managing dynamic content. For example, F5 Dynamic Caching includes the ability to designate parameters as either indicative of new content or not. That is, the caching service can be configured to ignore some (or all) parameters and serve content out of cache instead of hammering on the origin server.

Let's say the URI for an image was: /directory/images/dog.gif?ver=1;sz=728X90 where valid query parameters are "ver" (version) and "sz" (size). A policy can be configured to recognize "ver" as indicative of different content while all other query parameters indicate the same content and can be served out of cache. With this kind of policy an attacker could send any combination of the following and the same image would be served from cache, even though "sz" is different and there are random additional query parameters.

/directory/images/dog.gif?ver=1;sz=728X90; id=1234
/directory/images/dog.gif?ver=1;sz=728X900; id=123456
/directory/images/dog.gif?ver=1;sz=728X90; cid=1234 

By placing an application fluent cache service in front of your origin servers, when Facebook (or Google) comes knocking, you're able to handle the load.

Action Items
There have been no reports of an attack stemming from this exploitable condition in Facebook Notes or Google, so blacklisting crawlers from either Facebook or Google seems premature. Given that this condition is based on protocol behavior and system design and not a vulnerability unique to Facebook (or Google), though, it would be a good idea to have a plan in place to address, should such an attack actually occur - from there or some other site.

You should review your own architecture and evaluate its ability to withstand a sudden influx of dynamic requests for content like this, and put into place an operational plan for dealing with it should such an event occur.

For more information on protecting against all types of DDoS attacks, check out a new infographic we’ve put together here.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@ThingsExpo Stories
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
SYS-CON Events announced today that BMC will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BMC delivers software solutions that help IT transform digital enterprises for the ultimate competitive business advantage. BMC has worked with thousands of leading companies to create and deliver powerful IT management services. From mainframe to cloud to mobile, BMC pairs high-speed digital innovation with robust IT industrialization – allowing customers to provide amazing user experiences with optimized IT per...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Collecting data in the field and configuring multitudes of unique devices is a time-consuming, labor-intensive process that can stretch IT resources. Horan & Bird [H&B], Australia’s fifth-largest Solar Panel Installer, wanted to automate sensor data collection and monitoring from its solar panels and integrate the data with its business and marketing systems. After data was collected and structured, two major areas needed to be addressed: improving developer workflows and extending access to a business application to multiple users (multi-tenancy). Docker, a container technology, was used to ...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
2015 predictions circa 1970: houses anticipate our needs and adapt, city infrastructure is citizen and situation aware, office buildings identify and preprocess you. Today smart buildings have no such collective conscience, no shared set of fundamental services to identify, predict and synchronize around us. LiveSpace and M2Mi are changing that. LiveSpace Smart Environment devices deliver over the M2Mi IoT Platform real time presence, awareness and intent analytics as a service to local connected devices. In her session at @ThingsExpo, Sarah Cooper, VP Business of Development at M2Mi, will d...
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In this session, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, will describe how to revolutionize your architecture and...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
We’re entering a new era of computing technology that many are calling the Internet of Things (IoT). Machine to machine, machine to infrastructure, machine to environment, the Internet of Everything, the Internet of Intelligent Things, intelligent systems – call it what you want, but it’s happening, and its potential is huge. IoT is comprised of smart machines interacting and communicating with other machines, objects, environments and infrastructures. As a result, huge volumes of data are being generated, and that data is being processed into useful actions that can “command and control” thi...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
SYS-CON Events announced today that MetraTech, now part of Ericsson, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Ericsson is the driving force behind the Networked Society- a world leader in communications infrastructure, software and services. Some 40% of the world’s mobile traffic runs through networks Ericsson has supplied, serving more than 2.5 billion subscribers.
Thanks to widespread Internet adoption and more than 10 billion connected devices around the world, companies became more excited than ever about the Internet of Things in 2014. Add in the hype around Google Glass and the Nest Thermostat, and nearly every business, including those from traditionally low-tech industries, wanted in. But despite the buzz, some very real business questions emerged – mainly, not if a device can be connected, or even when, but why? Why does connecting to the cloud create greater value for the user? Why do connected features improve the overall experience? And why do...
SYS-CON Events announced today that O'Reilly Media has been named “Media Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York City, NY. O'Reilly Media spreads the knowledge of innovators through its books, online services, magazines, and conferences. Since 1978, O'Reilly Media has been a chronicler and catalyst of cutting-edge development, homing in on the technology trends that really matter and spurring their adoption by amplifying "faint signals" from the alpha geeks who are creating the future. An active participa...
Imagine a world where targeting, attribution, and analytics are just as intrinsic to the physical world as they currently are to display advertising. Advances in technologies and changes in consumer behavior have opened the door to a whole new category of personalized marketing experience based on direct interactions with products. The products themselves now have a voice. What will they say? Who will control it? And what does it take for brands to win in this new world? In his session at @ThingsExpo, Zack Bennett, Vice President of Customer Success at EVRYTHNG, will answer these questions a...