Welcome!

Security Authors: Pat Romanski, Elizabeth White, Liz McMillan, Vincent Brasseur, Gilad Parann-Nissany

Related Topics: Security, Java, SOA & WOA, Linux

Security: Article

Malware Analysis | Part 1

How to use a number of tools to analyze a memory image file from an infected windows machine

Having your network environment protected with the latest virus protection, control what software is installed and allowed to run, restrict ingress and egress network access, protect web browsing, limit user account access, update security patches, change management practices, etc. All these efforts are critical to follow in the corporate environment but all will fall short if you don't have the proper monitoring in place to detect badness on your network and to respond quickly and effectively when it happens. When your network has the proper monitoring in place and knowledgeable engineers to monitor for outbreaks you will begin to have better visibility of how network traffic flows in your environment. When you understand how traffic flows on your network you can respond better when badness happens.

I will demonstrate how to use a number of tools to analyze a memory image file from an infected windows machine. I will demonstrate how to acquire a memory image from a windows machine that is currently running will malware infection and the process of memory analysis using various tools.

To gather an image file from an infected machine can be performed a number of ways. If you have an enterprise version of EnCase you can acquire evidence very fast and from various devices such as laptop, desktop, and mobile devices like smartphones and tablets. For most of us our IT budget is limited and this option is not viable. Using something like F-Response TACTICAL is a solution and requires only two usb sticks. One is labeled TACTICAL Subject and the other is TACTICAL Examiner, you put the Examiner one in the box you are researching malware. Next you put the Subject on the box that is infected with Malware. Below I demonstrate how this is performed with the subject on a windows box (infected with malware) and the examiner installed on a Linux platform (SANS SIFT workstation) to acquire the image.

Once the usb stick is loaded on the windows box install the program so it can listen on its external interface (see Figure #1).

Figure #1

Running the subject program on the infected windows box, remember to enable physical memory

On your SIFT workstation insert the usb stick examiner, make sure it shows up as loaded on your workstation (See Figure #2). Next execute the program f-response-tacex-lin.exe using the following syntax (see Figure #3). Notice that it connects to the following:

  • · iqn.2008-02.com.f-response.cr0wn-d00e37654:disk-0
  • · iqn.2008-02.com.f-response.cr0wn-d00e37654:disk-1
  • · iqn.2008-02.com.f-response.cr0wn-d00e37654:vol-c
  • · iqn.2008-02.com.f-response.cr0wn-d00e37654:vol-e
  • · iqn.2008-02.com.f-response.cr0wn-d00e37654:pmem

Figure #2

Make sure the examiner usb is loaded on the SIFT workstation

Figure #3

Perform the connection between the SIFT workstation and the infected windows box

Next we are going to login to iqn.2008-02.com.f-response.cr0wn-d00e37654:disk-0 with the following command (see Figure #4):

# iscsiadm -m node -targetname=iqn.2008-02.com.f-response.cr0wn-d00e37654:disk-0 --login

Figure #4

Successfully connected to windows box at 192.168.1.129

The iscsiadm command is an open-iscsi administration utility that allows discovery and login to iSCSI targets, as well as access and management of the open-iscsi database. The -m specify the mode which is node it can also be defined as: discoverydb, fw, host iface or session. With the mode selected as node we use the -targetname= and specify the location of the target drive.

After successfully connecting to the remote machine run fdisk -l and see our new device located at /dev/sdd1 (see Figure #5)

Figure #5

Results after running fdisk -l

Next we will mount the partition /dev/sdd1 which is located in the screenshot above (Figure #5) using the following mount command.

# mount -o ro,show_sys_files,streams_interface=windows /dev/sdd1 /mnt/windows_mount

Using the mount command with the -o option: ro - mount the file system read-only, show_sys_files - show all system files as normal files, streams_interface=windows - this option controls how named data streams in WIMfiles are made available with "windows" the named data stream. This will mount the memory from our windows box to /mnt/windows_mount. After changing into that directory and list files you will see the following (see Figure #6)

Figure #6

List of files after mounting the memory from our target windows box following by login to the pmem location

Now we need to login to the process memory of the target which is the pmem location (see Figure #3 ‘F-Response Target = iqn.2008-02.com.f-response.cr0wn-d00e37654:pmem'). We will use the iscsiadm open-iscsi administration utility to perform this task with the following command:

# iscsiadm -m node -targetname=iqn.2008-02.com.f-response.cr0wn-d00e37654:pmem -login

Again we are using the isciadm utility specifying the node with targetname of where the pmem file is located. Now we will run fdisk -l and see the partition tables (see Figure #7).

Figure #7

Results after running fdisk -l notice the HPFS/NTFS system at /dev/sdd1. This is the result after login to the pmem location.

Now we can image the remote systems memory using dc3dd which was developed by Jesse Komblum at the DoD Cyber Crime Center. Dc3dd is similar to dd but allows us to use for forensic work, allowing you to take hashes and split an image all from one command. Open up a terminal and type the following:

# dc3dd if=/dev/sde of=/cases/remote-system-memory8.img progress=on hash=md5 hashlog=/cases/remote-system-memory8.md5

Here is a breakdown of the command:

  • · if=DEVICE or FILE - Read input from a device or a file, in this case /dev/sde (see Figure #7 ‘Disk /dev/sde: 2466 MB, 2466250752 bytes
  • · of=FILE or DEVICE - Write output to a file or device, in this case /cases/remote-system-memory8.img
  • · progress=on - Will show progress on screen
  • · hash=ALGORITHM - Compute an ALGORITHM hash of the input and also of any outputs specified using hof=, hofs=, phod=, or fhod=, where ALGORITHM is one of md5, sha1, sha256, or sha512
  • · hashlog=FILE - Log total hashes and piecewise hashes to FILE.

This will do a forensic copy of the windows memory file to your computer; you can see a screenshot of the progress (see Figure #8).

Figure #8

Performing a forensic copy of the windows memory file using dc3dd

Now that we have an image file of the windows memory we can analysis for existence of malware. There are a couple of tools that you can use one is for the windows platform called Redline by Mandiant which I will be going over in greater detail later. The second tool which is open source is Volatility implemented in Python for the extraction of digital artifacts from volatile memory (RAM) samples. I will be discussing both in very limited bases in this month's article.

If the memory image was acquired from an unknown system and although this was a closed lab environment and I know what system it came from you will need to identify the operation system using Volatility (see Figure #9).

Figure #9

Using Volatility to identify what operation system the dump came from

We use the imageinfo plug-in for Volatility to find out the operation system the memory dump belongs to. Here we see in the suggested profile portion of the output it is a WinXP SP2x86 system, you will need this information to perform more work using Volatility on this memory image file.

To look at the running processes we use the following command:

$ vol.py -profile=WinXPSP2x86 pslist -f remote-system-memory8.img

You can also use the psscan plugin to scan the memory image for EPROCESS blocks with the following command:

$ vol.py -profile=WinXPSP2x86 psscan -f remote-system-memory8.img

Use the psscan to enumerate processes using pool tag scanning that can find processes that previously terminated (inactive) and processes that have been hidden or unlinked by a rootkit (see Figure #10).

Figure #10

Volatility with the psscan invoked

Now for a quick view of Mandiant Redline application we copy the windows memory images off our SANS Investigate Forensic Toolkit (SIFT) and on to a separate Windows workstation where you have Mandiant Redline installed. Next you will analysis your memory image with Redline (see Figure #11).

Figure #11

Loading memory image to be analyzed by Mandiant Redline followed by choosing ‘I am Reviewing a Full Live Response or Memory Image'.

Mandiant Redline is a free tool that provides host investigative capabilities to users and finds signs of malicious activity through memory and file analysis to develop a threat assessment profile. After I infected the test windows box with a known malware variant and allowed the system to react the machine wanted to restart at that moment I acquired a memory image and loaded it into Redline. I then allowed the machine to reboot and took another memory image. The total processes that are running on the system are in Figures #12 (left before reboot & right after reboot).

Figure #12

Total numbers of processes running after installing of malware then list of processes running after reboot

After comparing the two different lists we see that after reboot we have new processes running (jh MRI Score 61 PID - 38533 and svchost.exe MRI Score 61 PID - 1560). MRI Score is the Redline analyzes of each process and memory section to calculate a Malware Risk Index (MRI) score for each process.

Next month I will dive deeper into further information you can learn from analysis of memory images using both Mandiant Redline and Volatility.

More Stories By David Dodd

David J. Dodd is currently in the United States and holds a current 'Top Secret' DoD Clearance and is available for consulting on various Information Assurance projects. A former U.S. Marine with Avionics background in Electronic Countermeasures Systems. David has given talks at the San Diego Regional Security Conference and SDISSA, is a member of InfraGard, and contributes to Secure our eCity http://securingourecity.org. He works for Xerox as Information Security Officer City of San Diego & pbnetworks Inc. http://pbnetworks.net a Service Disabled Veteran Owned Small Business (SDVOSB) located in San Diego, CA and can be contacted by emailing: dave at pbnetworks.net.

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.