Welcome!

Security Authors: Carmen Gonzalez, Peter Silva, Jay Smith, Michael Shaulov, Paige Leidig

Related Topics: Cloud Expo, Java, SOA & WOA, Virtualization, Security, Big Data Journal

Cloud Expo: Article

Encryption in Use Deep Dive

What you need to know to secure and control your data

Encryption in Use – Fact and Fiction
Risk-conscious enterprises across the globe have been reluctant to embrace the public cloud model. For many, compliance requirements are the source of the reluctance. For others, concerns about ceding control of their data to a cloud service provider, without the cloud service provider accepting liability for customer data, is the major hurdle. Conforming to data residency regulations, when implementing a distributed services model, present a further complication. Even as these challenges to adoption loom large, the economics and productivity benefits of cloud-based services remain compelling. For these organizations to make the transition to the cloud, a range of elements must be in place, including continuous monitoring of the cloud service provider’s data center, enforcement of appropriate service level agreements, data classification and definition of internal processes to manage cloud-based services.  Encryption in use is a critical piece of this puzzle, since it provides a mechanism for the enterprise to extend their boundary of control to their data stored and processed within the cloud service provider's environment. However, not all encryption in use is created equally, secure, and a generic. A one size fits all approach is likely to fall short in providing a balance between security and functionality.

The Case for Encryption in Use
For almost as long as the field of information security has been in existence, encryption of data at rest and encryption of data in transit have served as cornerstone technologies to prevent access to sensitive, proprietary, confidential or regulated data. Both forms of encryption operate through exchange and presentation of a combination of public and private keys that unlock the encrypted data. The great step forward for modern cryptography was the idea that the key that you use to encrypt your data could be made public while the key that is used to decrypt your data could be kept private. The purpose of both is to ensure that only users or systems with access to the key could access the data.

Encryption in use provides functionality that is almost counter-intuitive to the purpose behind modern encryption for data at rest and data in transit, working to ensure that the data remains in an encrypted state, even as users interact with the data, performing operations like search or sort, for example. However, just like encryption for other states of data, encryption in use serves a clear need. Without encryption in use, organizations cannot retain ownership and control of their data stored and processed in a cloud-based service – whether control is required to address security, compliance, data residency, privacy or governance needs. Encryption in use is similar to format preserving encryption in that it is applied in real time, but allows for a far broader range of cloud service functionality and feature support.

Encryption in use enables enterprises to independently secure their data stored and processed at cloud service providers – while holding on to the encryption keys. The ongoing revelations of government surveillance that are supported by laws compelling cloud service providers to hand over customer data, highlight the challenge that end users face of meeting their obligations to retain direct control of their cloud data.  The recent set of recommendations from the Review Group on Intelligence and Communications Technologies appointed by the White House focused on implementing better privacy steps is only the first step in revisiting policies.

Because encryption in use is an emerging area, the technology can be easily misunderstood, or even easily misrepresented. Typically, encryption in use entails the use of a gateway, or proxy, architecture. The user accesses the application via the gateway – whether the application server is in the cloud or on premise.  The key to decrypt the data resides in the gateway (or in an integrated HSM), ensuring that data stored and processed at the server is persistently encrypted, even as the encryption is entirely transparent to the user. Were the user to access the server directly, bypassing the gateway, the data would simply appear as a string of encrypted gibberish.  As long as the gateway remains under the data owner’s control, only authorized users can gain access to the data stored and processed at the cloud service provider, or other third party.

In the event that the cloud service provider is required to hand over customer data in response to a government subpoena, they must their meet their legal obligation. However, if encryption in use has been implemented, the service provider can only hand over encrypted gibberish. The request for data must then be directed to the entity that holds the encryption keys. Likewise, a rogue administrator, a hacker or government entity would only be able view unintelligible gibberish if they gained access to the user account.

Not Some Kind of Magic
In order to deliver on the promise of encryption in use, the gateway must deliver on a robust set of functionality requirements: comprehensive service functionality and water-tight security based on a strong encryption scheme. What this means in practical terms is that the entirety of the service’s functional elements and behavior must be mapped, and that the encryption scheme must allow for preserving functionality without compromising security. This is because the gateway must recreate the session for the cloud-facing leg, and transpose encrypted data into the flow without disrupting functionality like search, sort and index.  Otherwise, the user experience is degraded, and the value proposition of the cloud-based service of improving productivity is undermined.

Vendors face another set of choices: take shortcuts to cover as much ground to provide a superficial sense of security, or invest in extensive R&D work to deliver the optimal balance between functionality and strong security. For instance, vendors can opt to provide encryption for a just a few data fields, out of hundreds or even a few thousand, to encompass a specific subset of the enterprise’s information. Equally, they can choose to implement a cloud data encryption scheme that preserves features relying on referential integrity such as sort, search and index that is easily reversible by attackers.

By way of illustration, if the scheme involves deterministically encrypting words into very short AES blocks, the encoding pattern is consistent enough for common attacks to yield clear text from what might appear to be encrypted text. There are a variety of iterative attacks such as chosen plaintext attacks that will yield clear text if the encryption relies on a simplistic and consistent encoding pattern. So while the data may appear to be encrypted, and less engineering resources are required to support application features and functionality, the data protection in place is barely skin deep.

Encryption in use is not a kind of magic – it requires dedicated engineering expertise, with collaboration between infrastructure, information security and encryption experts. And, the encryption scheme must be tailored to a specific application or service to deliver on the appropriate balance of security and functionality.

Another significant consideration is evaluating encryption in use in the context of a specific application or service. From the customer’s perspective, it is appealing to use a single encryption platform for multiple applications. No customer wants to have to manage multiple appliances, management interfaces and vendors. The reality, however, is that to strike an acceptable balance for any risk conscious organization between security and functionality requires deep application knowledge and encryption-in-use expertise. Dig a little deeper on degree of support, or risk a gamble on production readiness. The degree of support is as critical as the extent of support.

Evaluating Encryption in Use Claims
Can enterprises rely on a standard validation for encryption in use? Precisely because encryption in use is a new area, third-party validation is a critical requirement before it is implemented in production environments. Unfortunately, the current set of standard validation and certification tests have limited applicability.

The most frequently cited third-party validation by vendors in the space is FIPS 140-2 validation. As critical as 140-2 validation is as an evaluation benchmark, and specifically required under some federal procurement mandates, it has some limitations for encryption in use.

Taking a step backward, its important to note the scope of FIPS validation. The process essentially verifies that the algorithms are implemented according to defined specifications. However, it does not provide any validation about how the platform would use the cryptographic module in order to support encryption in use.

For instance, the FIPS validation doesn't outline a set of best practices on how to use the cryptographic module. Instead, it verifies that whenever the system invokes AES encryption, the module performs AES encryption according to the standard specification.  FIPS validation is limited to the cryptographic modules used, not the overall integrity of the platform, or the encryption scheme used in production environments. While FIPS validation is an important consideration, enterprises should be aware of its limitations as the sole third party validation for encryption. In an outside world example, validation would demonstrate that a $500 bicycle lock is impervious to any lock picking attempts, but when used to lock a bike to a fire hydrant, it does nothing to protect the bike from a thief simply lifting the bike up and driving away.

Hopefully this has been useful in helping you to determine the right approach your organization can take to secure and maintain control of your data. I look forward to hearing any further points I might have missed.

More Stories By Elad Yoran

Elad is Chairman and CEO of cloud encryption company, Vaultive. His nearly 20 years in the cyber security industry spans experience as an executive, consultant, investor, investment banker and a several-time successful entrepreneur. Elad’s entrepreneurial experience includes Riptech, the pioneering provider of managed security services to governments and Fortune 500 corporations around the world, acquired by Symantec Corporation, Sentrigo, a leading provider of database security recently acquired by McAfee, and MediaSentry, a provider of anti-piracy technology solutions to the motion picture, music and software industries, acquired by SafeNet. Elad has also served as Vice President, Global Business Development at Symantec and as Vice President at Broadview International (acquired by Jeffries), an investment bank focusing on mergers and acquisitions in the technology industry, where he led the firm’s information security practice. Elad has been recognized as “Entrepreneur of the Year” by Ernst & Young.

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have spoken with, or attended presentations from, utilities in the United States, South America, Asia and Europe. This session will provide a look at the CREPE drivers for SmartGrids and the solution spaces used by SmartGrids today and planned for the near future. All organizations can learn from SmartGrid’s use of Predictive Maintenance, Demand Prediction, Cloud, Big Data and Customer-facing Dashboards...
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Whether you're a startup or a 100 year old enterprise, the Internet of Things offers a variety of new capabilities for your business. IoT style solutions can help you get closer your customers, launch new product lines and take over an industry. Some companies are dipping their toes in, but many have already taken the plunge, all while dramatic new capabilities continue to emerge. In his session at Internet of @ThingsExpo, Reid Carlberg, Senior Director, Developer Evangelism at salesforce.com, to discuss real-world use cases, patterns and opportunities you can harness today.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
Noted IoT expert and researcher Joseph di Paolantonio (pictured below) has joined the @ThingsExpo faculty. Joseph, who describes himself as an “Independent Thinker” from DataArchon, will speak on the topic of “Smart Grids & Managing Big Utilities.” Over his career, Joseph di Paolantonio has worked in the energy, renewables, aerospace, telecommunications, and information technology industries. His expertise is in data analysis, system engineering, Bayesian statistics, data warehouses, business intelligence, data mining, predictive methods, and very large databases (VLDB). Prior to DataArchon, he served as a VP and Principal Analyst with Constellation Group. He is a member of the Boulder (Colo.) Brain Trust, an organization with a mission “to benefit the Business Intelligence and data management industry by providing pro bono exchange of information between vendors and independent analysts on new trends and technologies and to provide vendors with constructive feedback on their of...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...