Welcome!

Cloud Security Authors: Elizabeth White, Zakia Bouachraoui, Pat Romanski, Yeshim Deniz, Liz McMillan

Related Topics: Cloud Security, Java IoT, Microservices Expo, Linux Containers, Agile Computing, SDN Journal

Cloud Security: Article

Security Threats Continue to Grow

How Big Data and Machine Learning Can Work Together to Solve Security Threats

They read like a list of horror stories for businesses big and small alike. Sony’s PlayStation Network is hacked twice, exposing the personal information of 77 million customers. Zappos becomes the victim of a hack that exposes the addresses and phone numbers of 24 million people. Up to 81 million Yahoo email customers’ passwords are compromised, forcing the company to tell its users to reset them immediately. 110 million customers are affected when hackers infiltrate Target, and PIN numbers and credit card information are stolen. But these stories of major security breaches aren’t works of fiction--they actually happened, and it’s a concern businesses all over the world live with. Many companies are now turning to big data and machine learning as a way to tackle these risks and make sure valuable data is protected at all times.

Dealing with IT security issues is certainly nothing new for businesses. Computer viruses, malware, worms, and other threats have been around for a while, forcing companies to come up with solutions to either eliminate them or minimize the damages they cause. Much of this approach has been reactive in nature, essentially identifying a new threat or tactic hackers are using and developing the means to fight it. Older security systems had to search through smaller clusters of data to identify patterns that might indicate an attack, but the systems required significant resources and time to work, and even then their success rate was hit-and-miss. Systems were usually finding themselves being left behind by would-be attackers, forced to play catch-up in a game with a lot at stake.

With the growth of big data, data security has become even more complex and difficult to manage. More and more data is being created around the world, and trying to sort through all of it to identify security risks would tax older systems immensely. With new solutions desperately needed, many experts turned to machine learning. In simple terms, machine learning is a system that performs certain tasks by continuously learning from data without the need for specific programming. Machine learning can be used to detect security threats by sorting through all that data, something that simply wasn’t possible to that extent several years ago. Unlike traditional systems, which can get bogged down the more data they have to sort through, machine learning can actually get better if more data is added.

The way machine learning is able to detect security threats is by going through the data and identifying the signs and code that point to potential risks. This in turn creates a profile of what to look for, allowing machine learning and security systems to be able to predict and act on threats before they even happen. Essentially, machine learning can be used for security in much the same way it is used for advertising and marketing, targeting certain features it has determined through pattern recognition and using behavioral analytics to make more accurate predictions. This analysis is not only able to capture the hard data involved in security risks, it captures the context of risky events and can connect the relationships of those events to better understand just how threatening the risk actually is. This entire process takes less time than traditional systems and does not slow down productivity.

Threat detection through machine learning and big data was once out of reach for smaller businesses due to cost concerns and personnel requirements, but as these technologies have matured, smaller operations are now getting more access through big data cloud technology. The advances in recent years makes the utilization of machine learning possible for smaller security teams. In fact, security threat detection through machine learning is more of a hands-off process since machine learning systems undergo training on their own. The system is always learning, populating training sets to always get better at detecting security risks, even if they are new. The processing power and storage capabilities needed for machine learning are also within reach for small businesses thanks to advances in flash storage. The growing adaptability for companies makes security more robust and predictive instead of reactive.

There will never be a way to completely eliminate all security threats. Hackers and malware artists will always be looking for news ways to infiltrate and steal corporate information. But with a better understanding of the ways big data and machine learning can work together toward addressing this common problem, security breaches will be rarer and not as painful as those that have happened in recent years. A more secure future is definitely possible through machine learning.

More Stories By Gil Allouche

Gil Allouche is the Vice President of Marketing at Qubole. Most recently Sr. Director of Marketing for Karmasphere, a leading Big Data Analytics company offering SQL access to Apache Hadoop, where he managed all marketing functions, Gil brings a keen understanding of the Big Data target market and its technologies and buyers. Prior to Karmasphere, Gil was a product marketing manager and general manager for the TIBCO Silver Spotfire SaaS offering where he developed and executed go-to-market plans that increased growth by 600 percent in just 18 months. Gil also co-founded 1Yell, a social media ad network company. Gil began his marketing career as a product strategist at SAP while earning his MBA at Babson College and is a former software engineer.

IoT & Smart Cities Stories
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...