Welcome!

Security Authors: Elizabeth White, Liz McMillan, Vincent Brasseur, Pat Romanski, Gilad Parann-Nissany

Related Topics: Big Data Journal, Java, Linux, Web 2.0, Cloud Expo, Security

Big Data Journal: Blog Post

In-Memory Database vs. In-Memory Data Grid

Revisited

A few months ago, I spoke at the conference where I explained the difference between caching and an in-memory data grid. Today, having realized that many people are also looking to better understand the difference between two major categories in in-memory computing: In-Memory Database and In-Memory Data Grid, I am sharing the succinct version of my thinking on this topic - thanks to a recent analyst call that helped to put everything in place :)

TL;DR

Skip to conclusion to get the bottom line.

Nomenclature
Let's clarify the naming and buzzwords first. In-Memory Database (IMDB) is a well-established category name and it is typically used unambiguously.

It is important to note that there is a new crop of traditional databases with serious In-Memory "options". That includes MS SQL 2014, Oracle's Exalytics and Exadata, and IBM DB2 with BLU offerings. The line is blurry between these and the new pure In-Memory Databases, and for the simplicity I'll continue to call them In-Memory Databases.

In-Memory Data Grids (IMDGs) are sometimes (but not very frequently) called In-Memory NoSQL/NewSQL Databases. Although the latter can be more accurate in some case - I am going to use the In-Memory Data Grid term in this article, as it tends to be the more widely used term.

Note that there are also In-Memory Compute Grids and In-Memory Computing Platforms that include or augment many of the features of In-Memory Data Grids and In-Memory Databases.

Confusing, eh? It is... and for consistency - going forward we'll just use these terms for the two main categories:

  • In-Memory Database
  • In-Memory Data Grid

Tiered Storage
It is also important to nail down what we mean by "In-Memory". Surprisingly - there's a lot of confusion here as well as some vendors refer to SSDs, Flash-on-PCI, Memory Channel Storage, and, of course, DRAM as "In-Memory".

In reality, most vendors support a Tiered Storage Model where some portion of the data is stored in DRAM (the fastest storage but with limited capacity) and then it gets overflown to a verity of flash or disk devices (slower but with more capacity) - so it is rarely a DRAM-only or Flash-only product. However, it's important to note that most products in both categories are often biased towards mostly DRAM or mostly flash/disk storage in their architecture.

Bottom line is that products vary greatly in what they mean by "In-Memory" but in the end they all have a significant "In-Memory" component.

Technical Differences
It's easy to start with technical differences between the two categories.

Most In-Memory Databases are your father's RDBMS that store data "in memory" instead of disk. That's practically all there's to it. They provide good SQL support with only a modest list of unsupported SQL features, shipped with ODBC/JDBC drivers and can be used in place of existing RDBMS often without significant changes.

In-Memory Data Grids typically lack full ANSI SQL support but instead provide MPP-based (Massively Parallel Processing) capabilities where data is spread across large cluster of commodity servers and processed in explicitly parallel fashion. The main access pattern is key/value access, MapReduce, various forms of HPC-like processing, and a limited distributed SQL querying and indexing capabilities.

It is important to note that there is a significant crossover from In-Memory Data Grids to In-Memory Databases in terms of SQL support. GridGain, for example, provides pretty serious and constantly growing support for SQL including pluggable indexing, distributed joins optimization, custom SQL functions, etc.

Speed Only vs. Speed + Scalability
One of the crucial differences between In-Memory Data Grids and In-Memory Databases lies in the ability to scale to hundreds and thousands of servers. That is the In-Memory Data Grid's inherent capability for such scale due to their MPP architecture, and the In-Memory Database's explicit inability to scale due to fact that SQL joins, in general, cannot be efficiently performed in a distribution context.

It's one of the dirty secrets of In-Memory Databases: one of their most useful features, SQL joins, is also is their Achilles heel when it comes to scalability. This is the fundamental reason why most existing SQL databases (disk or memory based) are based on vertically scalable SMP (Symmetrical Processing) architecture unlike In-Memory Data Grids that utilize the much more horizontally scalable MPP approach.

It's important to note that both In-Memory Data Grids and In-Memory Database can achieve similar speed in a local non-distributed context. In the end - they both do all processing in memory.

But only In-Memory Data Grids can natively scale to hundreds and thousands of nodes providing unprecedented scalability and unrivaled throughput.

Replace Database vs. Change Application
Apart from scalability, there is another difference that is important for uses cases where In-Memory Data Grids or In-Memory Database are tasked with speeding up existing systems or applications.

An In-Memory Data Grid always works with an existing database providing a layer of massively distributed in-memory storage and processing between the database and the application. Applications then rely on this layer for super-fast data access and processing. Most In-Memory Data Grids can seamlessly read-through and write-through from and to databases, when necessary, and generally are highly integrated with existing databases.

In exchange - developers need to make some changes to the application to take advantage of these new capabilities. The application no longer "talks" SQL only, but needs to learn how to use MPP, MapReduce or other techniques of data processing.

In-Memory Databases provide almost a mirror opposite picture: they often requirereplacing your existing database (unless you use one of those In-Memory "options" to temporary boost your database performance) - but will demand significantly less changes to the application itself as it will continue to rely on SQL (albeit a modified dialect of it).

In the end, both approaches have their advantages and disadvantages, and they may often depend in part on organizational policies and politics as much as on their technical merits.

Conclusion
The bottom line should be pretty clear by now.

If you are developing a green-field, brand new system or application the choice is pretty clear in favor of In-Memory Data Grids. You get the best of the two worlds: you get to work with the existing databases in your organization where necessary, and enjoy tremendous performance and scalability benefits of In-Memory Data Grids - both of which are highly integrated.

If you are, however, modernizing your existing enterprise system or application the choice comes down to this:

You will want to use an In-Memory Database if the following applies to you:

  • You can replace or upgrade your existing disk-based RDBMS
  • You cannot make changes to your applications
  • You care about speed, but don't care as much about scalability

In other words - you boost your application's speed by replacing or upgrading RDBMS without significantly touching the application itself.

On the other hand, you want to use an In-Memory Data Grid if the following applies to you:

  • You cannot replace your existing disk-based RDBMS
  • You can make changes to (the data access subsystem of) your application
  • You care about speed and especially about scalability, and don't want to trade one for the other

In other words - with an In-Memory Data Grid you can boost your application's speed and provide massive scale by tweaking the application, but without making changes to your existing database.

It can be summarized it in the following table:


In-Memory Data GridIn-Memory Database
Existing Application Changed Unchanged
Existing RDBMS Unchanged Changed or Replaced
Speed Yes Yes
Max. Scalability Yes No

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today. Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996. He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@ThingsExpo Stories
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...