Welcome!

Cloud Security Authors: Elizabeth White, Lisa Calkins, Mamoon Yunus, Pat Romanski, Liz McMillan

Related Topics: @CloudExpo, Cloud Security, @ThingsExpo

@CloudExpo: Blog Feed Post

What Is an Application Delivery Controller: Part 2 | @CloudExpo #Cloud #Virtualization

Part 2: Let’s examine the basic application delivery transaction

devcentral_basics_article_banner

Application Delivery Basics
One of the unfortunate effects of the continued evolution of the load balancer into today’s application delivery controller (ADC) is that it is often too easy to forget the basic problem for which load balancers were originally created—producing highly available, scalable, and predictable application services. We get too lost in the realm of intelligent application routing, virtualized application services, and shared infrastructure deployments to remember that none of these things are possible without a firm basis in basic load balancing technology. So how important is load balancing, and how do its effects lead to streamlined application delivery?

Let’s examine the basic application delivery transaction. The ADC will typically sit in-line between the client and the hosts that provide the services the client wants to use. As with most things in application delivery, this is not a rule, but more of a best practice in a typical deployment. Let’s also assume that the ADC is already configured with a virtual server that points to a cluster consisting of two service points. In this deployment scenario, it is common for the hosts to have a return route that points back to the load balancer so that return traffic will be processed through it on its way back to the client.

The basic application delivery transaction is as follows:

  1. The client attempts to connect with the service on the ADC.
  2. The ADC accepts the connection, and after deciding which host should receive the connection, changes the destination IP (and possibly port) to match the service of the selected host (note that the source IP of the client is not touched).
  3. The host accepts the connection and responds back to the original source, the client, via its default route, the load balancer.
  4. The ADC intercepts the return packet from the host and now changes the source IP (and possible port) to match the virtual server IP and port, and forwards the packet back to the client.
  5. The client receives the return packet, believing that it came from the virtual server or host, and continues the process.

how lb works

Figure 1. A basic load balancing transaction.

This very simple example is relatively straightforward, but there are a couple of key elements to take note of. First, as far as the client knows, it sends packets to the virtual server and the virtual server responds—simple. Second, the NAT takes place. This is where the ADC replaces the destination IP sent by the client (of the virtual server) with the destination IP of the host to which it has chosen to load balance the request. Step three is the second half of this process (the part that makes the NAT “bi-directional”). The source IP of the return packet from the host will be the IP of the host; if this address were not changed and the packet was simply forwarded to the client, the client would be receiving a packet from someone it didn’t request one from, and would simply drop it. Instead, the ADC, remembering the connection, rewrites the packet so that the source IP is that of the virtual server, thus solving this problem.

The Application Delivery Decision
How does the ADC decide which host to send the connection to? And what happens if the selected host isn’t working?

Let’s discuss the second question first. What happens if the selected host isn’t working? The simple answer is that it doesn’t respond to the client request and the connection attempt eventually times out and fails. This is obviously not a preferred circumstance, as it doesn’t ensure high availability. That’s why most ADC technology includes some level of health monitoring that determines whether a host is actually available before attempting to send connections to it.

There are multiple levels of health monitoring, each with increasing granularity and focus. A basic monitor would simply PING the host itself. If the host does not respond to PING, it is a good assumption that any services defined on the host are probably down and should be removed from the cluster of available services. Unfortunately, even if the host responds to PING, it doesn’t necessarily mean the service itself is working. Therefore most devices can do “service PINGs” of some kind, ranging from simple TCP connections all the way to interacting with the application via a scripted or intelligent interaction. These higher-level health monitors not only provide greater confidence in the availability of the actual services (as opposed to the host), but they also allow the load balancer to differentiate between multiple services on a single host. The ADC understands that while one service might be unavailable, other services on the same host might be working just fine and should still be considered as valid destinations for user traffic.

This brings us back to the first question: How does the ADC decide which host to send a connection request to? Each virtual server has a specific dedicated cluster of services (listing the hosts that offer that service) which makes up the list of possibilities. Additionally, the health monitoring modifies that list to make a list of “currently available” hosts that provide the indicated service. It is this modified list from which the ADC chooses the host that will receive a new connection. Deciding the exact host depends on the ADC algorithm associated with that particular cluster. The most common is simple round-robin where the ADC simply goes down the list starting at the top and allocates each new connection to the next host; when it reaches the bottom of the list, it simply starts again at the top. While this is simple and very predictable, it assumes that all connections will have a similar load and duration on the back-end host, which is not always true. More advanced algorithms use things like current-connection counts, host utilization, and even real-world response times for existing traffic to the host in order to pick the most appropriate host from the available cluster services.

Sufficiently advanced application delivery systems will also be able to synthesize health monitoring information with load balancing algorithms to include an understanding of service dependency. This is the case when a single host has multiple services, all of which are necessary to complete the user’s request. A common example would be in e-commerce situations where a single host will provide both standard HTTP services (port 80) as well as HTTPS (SSL/TLS at port 443) and any other potential service ports that need to be allowed. In many of these circumstances, you don’t want a user going to a host that has one service operational, but not the other. In other words, if the HTTPS services should fail on a host, you also want that host’s HTTP service to be taken out of the cluster list of available services. This functionality is increasingly important as HTTP-like services become more differentiated with this things like XML and scripting.

To Load Balance or Not to Load Balance?
Load balancing in regards to picking an available service when a client initiates a transaction request is only half of the solution. Once the connection is established, the ADC must keep track of whether the following traffic from that user should be load balanced. There are generally two specific issues with handling follow-on traffic once it has been load balanced: connection maintenance and persistence.

Connection maintenance
If the user is trying to utilize a long-lived TCP connection (telnet, FTP, and more) that doesn’t immediately close, the ADC must ensure that multiple data packets carried across that connection do not get load balanced to other available service hosts. This is connection maintenance and requires two key capabilities: 1) the ability to keep track of open connections and the host service they belong to; and 2) the ability to continue to monitor that connection so the connection table can be updated when the connection closes. This is rather standard fare for most ADCs.

Persistence
Increasingly more common, however, is when the client uses multiple short-lived TCP connections (for example, HTTP) to accomplish a single task. In some cases, like standard web browsing, it doesn’t matter and each new request can go to any of the back-end service hosts; however, there are many more instances (XML, JavaScript, e-commerce “shopping cart,” HTTPS, and so on) where it is extremely important that multiple connections from the same user go to the same back-end service host and not be load balanced. This concept is called persistence, or server affinity. There are multiple ways to address this depending on the protocol and the desired results. For example, in modern HTTP transactions, the server can specify a “keep-alive” connection, which turns those multiple short-lived connections into a single long-lived connection that can be handled just like the other long-lived connections. However, this provides little relief. Even worse, as the use of web and mobile services increases, keeping all of these connections open longer than necessary would strain the resources of the entire system. In these cases, most ADCs provide other mechanisms for creating artificial server affinity.

One of the most basic forms of persistence is source-address affinity. Source address affinity persistence directs session requests to the same server based solely on the source IP address of a packet. This involves simply recording the source IP address of incoming requests and the service host they were load balanced to, and making all future transaction go to the same host. This is also an easy way to deal with application dependency as it can be applied across all virtual servers and all services. In practice however, the wide-spread use of proxy servers on the Internet and internally in enterprise networks renders this form of persistence almost useless; in theory it works, but proxy-servers inherently hide many users behind a single IP address resulting in none of those users being load balanced after the first user’s request—essentially nullifying the ADC capability. Today, the intelligence of ADCs allows organizations to actually open up the data packets and create persistence tables for virtually anything within it. This enables them to use much more unique and identifiable information, such as user name, to maintain persistence. However, organizations one must take care to ensure that this identifiable client information will be present in every request made, as any packets without it will not be persisted and will be load balanced again, most likely breaking the application.

Final Thoughts
It is important to understand that basic load balancing technology, while still in use, is now only considered a feature of Application Delivery Controllers. ADCs evolved from the first load balancers through the service virtualization process and today with software only virtual editions. They can not only improve availability, but also affect the security and performance of the application services being requested.

Today, most organizations realize that simply being able to reach an application doesn’t make it usable; and unusable applications mean wasted time and money for the enterprise deploying them. ADCs enable organizations to consolidate network-based services like SSL/TLS offload, caching, compression, rate-shaping, intrusion detection, application firewalls, and even remote access into a single strategic point that can be shared and reused across all application services and all hosts to create a virtualized Application Delivery Network. Basic load balancing is the foundation without which none of the enhanced functionality of today’s ADCs would be possible.

And if you missed What is an ADC Part 1, you can find it here.

ps

Next Steps
Now that you’ve gotten this far, would you like to dig deeper or learn more about how application delivery works? Cool, then check out these resources:

Read the original blog entry...

More Stories By Peter Silva

Peter is an F5 evangelist for security, IoT, mobile and core. His background in theatre brings the slightly theatrical and fairly technical together to cover training, writing, speaking, along with overall product evangelism for F5. He's also produced over 350 videos and recorded over 50 audio whitepapers. After working in Professional Theatre for 10 years, Peter decided to change careers. Starting out with a small VAR selling Netopia routers and the Instant Internet box, he soon became one of the first six Internet Specialists for AT&T managing customers on the original ATT WorldNet network.

Now having his Telco background he moved to Verio to focus on access, IP security along with web hosting. After losing a deal to Exodus Communications (now Savvis) for technical reasons, the customer still wanted Peter as their local SE contact so Exodus made him an offer he couldn’t refuse. As only the third person hired in the Midwest, he helped Exodus grow from an executive suite to two enormous datacenters in the Chicago land area working with such customers as Ticketmaster, Rolling Stone, uBid, Orbitz, Best Buy and others.

Writer, speaker and Video Host, he's also been in such plays as The Glass Menagerie, All’s Well That Ends Well, Cinderella and others.

@ThingsExpo Stories
SYS-CON Events announced today that Massive Networks will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Massive Networks mission is simple. To help your business operate seamlessly with fast, reliable, and secure internet and network solutions. Improve your customer's experience with outstanding connections to your cloud.
Everything run by electricity will eventually be connected to the Internet. Get ahead of the Internet of Things revolution and join Akvelon expert and IoT industry leader, Sergey Grebnov, in his session at @ThingsExpo, for an educational dive into the world of managing your home, workplace and all the devices they contain with the power of machine-based AI and intelligent Bot services for a completely streamlined experience.
Because IoT devices are deployed in mission-critical environments more than ever before, it’s increasingly imperative they be truly smart. IoT sensors simply stockpiling data isn’t useful. IoT must be artificially and naturally intelligent in order to provide more value In his session at @ThingsExpo, John Crupi, Vice President and Engineering System Architect at Greenwave Systems, will discuss how IoT artificial intelligence (AI) can be carried out via edge analytics and machine learning techn...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
SYS-CON Events announced today that Datera, that offers a radically new data management architecture, has been named "Exhibitor" of SYS-CON's 21st International Cloud Expo ®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Datera is transforming the traditional datacenter model through modern cloud simplicity. The technology industry is at another major inflection point. The rise of mobile, the Internet of Things, data storage and Big...
SYS-CON Events announced today that GrapeUp, the leading provider of rapid product development at the speed of business, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Grape Up is a software company, specialized in cloud native application development and professional services related to Cloud Foundry PaaS. With five expert teams that operate in various sectors of the market acr...
In the enterprise today, connected IoT devices are everywhere – both inside and outside corporate environments. The need to identify, manage, control and secure a quickly growing web of connections and outside devices is making the already challenging task of security even more important, and onerous. In his session at @ThingsExpo, Rich Boyer, CISO and Chief Architect for Security at NTT i3, discussed new ways of thinking and the approaches needed to address the emerging challenges of security i...
In his opening keynote at 20th Cloud Expo, Michael Maximilien, Research Scientist, Architect, and Engineer at IBM, discussed the full potential of the cloud and social data requires artificial intelligence. By mixing Cloud Foundry and the rich set of Watson services, IBM's Bluemix is the best cloud operating system for enterprises today, providing rapid development and deployment of applications that can take advantage of the rich catalog of Watson services to help drive insights from the vast t...
SYS-CON Events announced today that CA Technologies has been named "Platinum Sponsor" of SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business - from apparel to energy - is being rewritten by software. From planning to development to management to security, CA creates software that fuels transformation for companies in the applic...
There is only one world-class Cloud event on earth, and that is Cloud Expo – which returns to Silicon Valley for the 21st Cloud Expo at the Santa Clara Convention Center, October 31 - November 2, 2017. Every Global 2000 enterprise in the world is now integrating cloud computing in some form into its IT development and operations. Midsize and small businesses are also migrating to the cloud in increasing numbers. Companies are each developing their unique mix of cloud technologies and service...
WebRTC is great technology to build your own communication tools. It will be even more exciting experience it with advanced devices, such as a 360 Camera, 360 microphone, and a depth sensor camera. In his session at @ThingsExpo, Masashi Ganeko, a manager at INFOCOM Corporation, will introduce two experimental projects from his team and what they learned from them. "Shotoku Tamago" uses the robot audition software HARK to track speakers in 360 video of a remote party. "Virtual Teleport" uses a...
Recently, IoT seems emerging as a solution vehicle for data analytics on real-world scenarios from setting a room temperature setting to predicting a component failure of an aircraft. Compared with developing an application or deploying a cloud service, is an IoT solution unique? If so, how? How does a typical IoT solution architecture consist? And what are the essential components and how are they relevant to each other? How does the security play out? What are the best practices in formulating...
Internet of @ThingsExpo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devic...
An increasing number of companies are creating products that combine data with analytical capabilities. Running interactive queries on Big Data requires complex architectures to store and query data effectively, typically involving data streams, an choosing efficient file format/database and multiple independent systems that are tied together through custom-engineered pipelines. In his session at @BigDataExpo at @ThingsExpo, Tomer Levi, a senior software engineer at Intel’s Advanced Analytics ...
In his session at @ThingsExpo, Arvind Radhakrishnen discussed how IoT offers new business models in banking and financial services organizations with the capability to revolutionize products, payments, channels, business processes and asset management built on strong architectural foundation. The following topics were covered: How IoT stands to impact various business parameters including customer experience, cost and risk management within BFS organizations.
SYS-CON Events announced today that Elastifile will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Elastifile Cloud File System (ECFS) is software-defined data infrastructure designed for seamless and efficient management of dynamic workloads across heterogeneous environments. Elastifile provides the architecture needed to optimize your hybrid cloud environment, by facilitating efficient...
SYS-CON Events announced today that Golden Gate University will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Since 1901, non-profit Golden Gate University (GGU) has been helping adults achieve their professional goals by providing high quality, practice-based undergraduate and graduate educational programs in law, taxation, business and related professions. Many of its courses are taug...
"We provide IoT solutions. We provide the most compatible solutions for many applications. Our solutions are industry agnostic and also protocol agnostic," explained Richard Han, Head of Sales and Marketing and Engineering at Systena America, in this SYS-CON.tv interview at @ThingsExpo, held June 6-8, 2017, at the Javits Center in New York City, NY.
SYS-CON Events announced today that DXWorldExpo has been named “Global Sponsor” of SYS-CON's 21st International Cloud Expo, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Digital Transformation is the key issue driving the global enterprise IT business. Digital Transformation is most prominent among Global 2000 enterprises and government institutions.
21st International Cloud Expo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Me...