Welcome!

Cloud Security Authors: Pat Romanski, Zakia Bouachraoui, Elizabeth White, Yeshim Deniz, Liz McMillan

Related Topics: @CloudExpo, Machine Learning , Artificial Intelligence

@CloudExpo: Blog Post

From Science to Art: Making Machine Learning Approachable | @CloudExpo #AI #ML #Cloud

The high barrier to entry prevents many companies from tapping into the full potential of machine learning

From Science to Art: Making Machine Learning Approachable
By Sundeep Sanghavi

The high barrier to entry prevents many companies from tapping into the full potential of machine learning. But what if you could make it more accessible?

We’re in the midst of a data explosion, with today’s enterprises amassing goldmines of information (25 quintillion bytes of data every day, according to some reports). But what exactly are they doing with this data? Considering the volume of data being collected is quickly becoming unmanageable, now is a good time to shift from manual machine learning to a cognitive approach. This enables businesses to better capitalize on their data and facilitate agile decision-making.

At this point, much of the discussion around machine learning has pivoted from adoption to how to simplify the adoption and implementation process. Many enterprises are looking to answer the question of how you break down the immensely tall barriers around data science so you can fully tap into the undeniable advantages machine learning has to offer.

Today, many businesses are simply collecting data, with little being done to translate it into usable intelligence. The data and people wind up trapped in siloes, and beyond that, any attempts at data analytics so far have usually been done on a limited scale. Generally speaking, these efforts were done with either one tool or one team, resulting in a very localized perspective of a much larger context.

For instance, a dashboard of results contains minimal traces of where insights have been sourced from, and a data table generated during one phase of a process may not be usable for any processes further down the stream. What enterprises actually need is for all involved users to be able to access the required intelligence so the necessary parties can leverage this insight to drive business goals.

From Inscrutably Scientific to Unbelievably Intuitive
The demand for machine learning is growing faster than ever before, and it’s currently one of the fastest growing disciplines of data science. Unfortunately, the barriers to entry in terms of cost and skill requirements are still as daunting as ever. This has led to a data scientist arms race, with enterprises frantically competing to woo, hire and retain expensive data scientists and engineers with fancy degrees to stay one step ahead. In fact, the number of job openings for machine learning engineers and data scientists far exceeds the availability—especially with so many already snapped up by industry titans like Google, Facebook and IBM.

So, where can you find these reclusive coders? It’s an understatement to even say it’s not an easy task.

But what if we flipped that equation on its head? Imagine if machine learning was no longer restricted to the world of genius-level data scientists and engineers—instead, it was open-source software that enabled non-coders and non-technical staff to access, build and deploy machine learning capabilities.

This would enable businesses to widen the practical application of machine learning to a much higher degree, while also lowering cost barriers. Everyone from developers to operations managers to business analysts to even business stakeholders would be able to cash in on the benefits of machine learning.

You Don’t Need a PhD to Crack Machine Learning
We at the Progress DataRPM team believe that data science is not merely about the algorithms, it’s about the value that the algorithm generates. DataRPM democratizes machine learning and data science through an innovative platform that arms every employee in an organization—from frontline employees to the board—with seamless, complete intelligence. It also helps them leverage the power of cognitive analytics for existing business applications, while at the same time opening up opportunities for rapidly building cognitive applications.

With this degree of accessibility, machine learning could spread to millions, or possibly even billions, of people. This means that companies no longer have to expend precious time and resources on attracting and hiring entire teams of expensive data scientists to write code. With pre-populated algorithms, parameters and configurations, you’ll eliminate the need for manual data science coding altogether. The machines themselves will be able to build models and predict outcomes, leaving your team free to spend more time analyzing and implementing the results.

With the cognitive approach to machine learning, several models can be built simultaneously, so processes that were once linear can now happen in parallel. This will not only save precious time, but also empower enterprises to amplify the scope of data investments. Deep, meaningful insights are extracted from each model and built by abstracting the required code, eliminating the need for manual coding. Thus, businesses can leverage the benefits of predictive analytics and insights while also monetizing their big data investments for a fraction of the time and effort they would’ve normally spent.

Read the original blog entry...

More Stories By Progress Blog

Progress offers the leading platform for developing and deploying mission-critical, cognitive-first business applications powered by machine learning and predictive analytics.

IoT & Smart Cities Stories
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time t...
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to impr...
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...
The hierarchical architecture that distributes "compute" within the network specially at the edge can enable new services by harnessing emerging technologies. But Edge-Compute comes at increased cost that needs to be managed and potentially augmented by creative architecture solutions as there will always a catching-up with the capacity demands. Processing power in smartphones has enhanced YoY and there is increasingly spare compute capacity that can be potentially pooled. Uber has successfully ...
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
JETRO showcased Japan Digital Transformation Pavilion at SYS-CON's 21st International Cloud Expo® at the Santa Clara Convention Center in Santa Clara, CA. The Japan External Trade Organization (JETRO) is a non-profit organization that provides business support services to companies expanding to Japan. With the support of JETRO's dedicated staff, clients can incorporate their business; receive visa, immigration, and HR support; find dedicated office space; identify local government subsidies; get...